708 research outputs found

    Reviewing, indicating, and counting books for modern research evaluation systems

    Get PDF
    In this chapter, we focus on the specialists who have helped to improve the conditions for book assessments in research evaluation exercises, with empirically based data and insights supporting their greater integration. Our review highlights the research carried out by four types of expert communities, referred to as the monitors, the subject classifiers, the indexers and the indicator constructionists. Many challenges lie ahead for scholars affiliated with these communities, particularly the latter three. By acknowledging their unique, yet interrelated roles, we show where the greatest potential is for both quantitative and qualitative indicator advancements in book-inclusive evaluation systems.Comment: Forthcoming in Glanzel, W., Moed, H.F., Schmoch U., Thelwall, M. (2018). Springer Handbook of Science and Technology Indicators. Springer Some corrections made in subsection 'Publisher prestige or quality

    COVID-19 vaccine effectiveness against hospitalization due to SARS-CoV-2: A test-negative design study based on Severe Acute Respiratory Infection (SARI) sentinel surveillance in Spain

    Get PDF
    Background: With the emergence of SARS-CoV-2, influenza surveillance systems in Spain were transformed into a new syndromic sentinel surveillance system. The Acute Respiratory Infection Surveillance System (SiVIRA in Spanish) is based on a sentinel network for acute respiratory infection (ARI) surveillance in primary care and a network of sentinel hospitals for severe ARI (SARI) surveillance in hospitals. Methods: Using a test-negative design and data from SARI admissions notified to SiVIRA between January 1 and October 3, 2021, we estimated COVID-19 vaccine effectiveness (VE) against hospitalization, by age group, vaccine type, time since vaccination, and SARS-CoV-2 variant. Results: VE was 89% (95% CI: 83-93) against COVID-19 hospitalization overall in persons aged 20 years and older. VE was higher for mRNA vaccines, and lower for those aged 80 years and older, with a decrease in protection beyond 3 months of completing vaccination, and a further decrease after 5 months. We found no differences between periods with circulation of Alpha or Delta SARS-CoV-2 variants, although variant-specific VE was slightly higher against Alpha. Conclusions: The SiVIRA sentinel hospital surveillance network in Spain was able to describe clinical and epidemiological characteristics of SARI hospitalizations and provide estimates of COVID-19 VE in the population under surveillance. Our estimates add to evidence of high effectiveness of mRNA vaccines against severe COVID-19 and waning of protection with time since vaccination in those aged 80 or older. No substantial differences were observed between SARS-CoV-2 variants (Alpha vs. Delta).The data of the study was originally collectedas part of the following projects run by the European Centre for Disease Prevention and Control:“Establishing Severe Acute Respiratory Infections (SARI) surveillance and performing hospital-based COVID-19 transmission studies”, “Developing an infrastructure and performing vaccine effectiveness studies for COVID-19 vaccines in the EU/EEA”, and the “Vaccine Effectiveness, Burden and Impact Studies(VEBIS) of COVID-19 and Influenza".S

    Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation

    Get PDF
    Authors are indebted with Ms Monica Glebocki for extensive editing of the manuscriptBackground: Periodontitis, the most prevalent chronic inflammatory disease, has been related to cardiovascular diseases. Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway. The aim of this research was to study the role of autophagy in peripheral blood mononuclear cells from patients with periodontitis and gingival fibroblasts treated with a lipopolysaccharide of Porphyromonas gingivalis. Autophagy-dependent mechanisms have been proposed in the pathogenesis of inflammatory disorders and in other diseases related to periodontitis, such as cardiovascular disease and diabetes. Thus it is important to study the role of autophagy in the pathophysiology of periodontitis. Methods: Peripheral blood mononuclear cells from patients with periodontitis (n = 38) and without periodontitis (n = 20) were used to study autophagy. To investigate the mechanism of autophagy, we evaluated the influence of a lipopolysaccharide from P. gingivalis in human gingival fibroblasts, and autophagy was monitored morphologically and biochemically. Autophagosomes were observed by immunofluorescence and electron microscopy. Results: We found increased levels of autophagy gene expression and high levels of mitochondrial reactive oxygen species production in peripheral blood mononuclear cells from patients with periodontitis compared with controls. A significantly positive correlation between both was observed. In human gingival fibroblasts treated with lipopolysaccharide from P. gingivalis, there was an increase of protein and transcript of autophagy-related protein 12 (ATG12) and microtubule-associated protein 1 light chain 3 alpha LC3. A reduction of mitochondrial reactive oxygen species induced a decrease in autophagy whereas inhibition of autophagy in infected cells increased apoptosis, showing the protective role of autophagy. Conclusion: Results from the present study suggest that autophagy is an important and shared mechanism in other conditions related to inflammation or alterations of the immune system, such as periodontiti

    Rotavirus symptomatic infection among unvaccinated and vaccinated children in Valencia, Spain

    Get PDF
    BACKGROUND: Human group A rotavirus is the leading cause of severe acute gastroenteritis in young children worldwide. Immunization programs have reduced the disease burden in many countries. Vaccination coverage in the Autonomous Region of Valencia, Spain, is around 40%, as the rotavirus vaccine is not funded by the National Health System. Despite this low-medium vaccine coverage, rotavirus vaccination has substantially reduced hospitalizations due to rotavirus infection and hospital-related costs. However, there are very few studies evaluating symptomatic rotavirus infections not requiring hospitalization in vaccinated children. The objective of this study was to investigate symptomatic rotavirus infections among vaccinated children in the health area served by the Hospital Clínico Universitario of Valencia, Spain, from 2013 to 2015. METHODS: A total of 133 children younger than 5 years of age with rotavirus infection were studied. Demographic and epidemiological data were collected and informed consent from their caretakers obtained. Rotavirus infection was detected by immunological methods and G/P rotavirus genotypes were determined by RT-PCR, following standard procedures from the EuroRotaNet network. RESULTS: Forty infants (30.1%; 95% CI: 22.3-37.9) out of 133 were diagnosed with symptomatic rotavirus infection despite having been previously vaccinated, either with RotaTeq (85%) or with Rotarix (15%). Children fully vaccinated against rotavirus (24.8%), partially vaccinated (5.3%) and unvaccinated (69.9%) were found. The infecting genotypes showed high G-type diversity, although no significant differences were found between the G/P genotypes infecting vaccinated and unvaccinated children during the same time period. G9P[8], G12P[8] and G1P[8] were the most prevalent genotypes. Severity of gastroenteritis symptoms required 28 (66.6%) vaccinated and 67 (73.6%) unvaccinated children to be attended at the Emergency Room. CONCLUSION: Rotavirus vaccine efficacy in reducing the incidence of severe rotavirus infection has been well documented, but symptomatic rotavirus infection can sometimes occur in vaccinees

    New Implications on Genomic Adaptation Derived from the Helicobacter pylori Genome Comparison

    Get PDF
    BACKGROUND: Helicobacter pylori has a reduced genome and lives in a tough environment for long-term persistence. It evolved with its particular characteristics for biological adaptation. Because several H. pylori genome sequences are available, comparative analysis could help to better understand genomic adaptation of this particular bacterium. PRINCIPAL FINDINGS: We analyzed nine H. pylori genomes with emphasis on microevolution from a different perspective. Inversion was an important factor to shape the genome structure. Illegitimate recombination not only led to genomic inversion but also inverted fragment duplication, both of which contributed to the creation of new genes and gene family, and further, homological recombination contributed to events of inversion. Based on the information of genomic rearrangement, the first genome scaffold structure of H. pylori last common ancestor was produced. The core genome consists of 1186 genes, of which 22 genes could particularly adapt to human stomach niche. H. pylori contains high proportion of pseudogenes whose genesis was principally caused by homopolynucleotide (HPN) mutations. Such mutations are reversible and facilitate the control of gene expression through the change of DNA structure. The reversible mutations and a quasi-panmictic feature could allow such genes or gene fragments frequently transferred within or between populations. Hence, pseudogenes could be a reservoir of adaptation materials and the HPN mutations could be favorable to H. pylori adaptation, leading to HPN accumulation on the genomes, which corresponds to a special feature of Helicobacter species: extremely high HPN composition of genome. CONCLUSION: Our research demonstrated that both genome content and structure of H. pylori have been highly adapted to its particular life style

    Additional records of metazoan parasites from Caribbean marine mammals, including genetically identified anisakid nematodes

    Get PDF
    Studies of marine mammal parasites in the Caribbean are scarce. An assessment for marine mammal endo- and ectoparasites from Puerto Rico and the Virgin Islands, but extending to other areas of the Caribbean, was conducted between 1989 and 1994. The present study complements the latter and enhances identification of anisakid nematodes using molecular markers. Parasites were collected from 59 carcasses of stranded cetaceans and manatees from 1994 to 2006, including Globicephala macrorhynchus, Kogia breviceps, Kogia sima, Lagenodelphis hosei, Mesoplodon densirostris, Peponocephala electra, Stenella longirostris, Steno bredanensis, Trichechus manatus. Tursiops truncatus, and Ziphius cavirostris. Sixteen species of endoparasitic helminthes were morphologically identified, including two species of acanthocephalans (Bolbosoma capitatum, Bolbosoma vasculosum), nine species of nematodes (Anisakis sp., Anisakis brevispiculata, Anisakis paggiae, Anisakis simplex, Anisakis typica, Anisakis ziphidarium, Crassicauda anthonyi, Heterocheilus tunicatus, Pseudoterranova ceticola), two species of cestodes (Monorygma grimaldi, Phyllobothrium delphini), and three species of trematodes (Chiorchis groschafti, Pulmonicola cochleotrema, Monoligerum blairi). The nematodes belonging to the genus Anisakis recovered in some stranded animals were genetically identified to species level based on their sequence analysis of mitochondrial DNA (629 bp of mtDNA cox 2). A total of five new host records and six new geographic records are presented.L'articolo è disponibile sul sito dell'editore http://www.springerlink.com
    corecore