182 research outputs found

    Charge and Spin Response of the Spin--Polarized Electron Gas

    Full text link
    The charge and spin response of a spin--polarized electron gas is investigated including terms beyond the random phase approximation. We evaluate the charge response, the longitudinal and transverse spin response, and the mixed spin--charge response self--consistently in terms of the susceptibility functions of a non--interacting system. Exchange--correlation effects between electrons of spin σ\sigma and σ\sigma^{'} are included following Kukkonen and Overhauser, by using spin--polarization dependent generalized Hubbard local field factors Gσ±{G_\sigma}^{\pm} and Gσˉ±{G_{\bar\sigma}}^{\pm}. The general condition for charge--density and spin--density--wave excitations of the system is discussed.Comment: 4 pages, latex, no figure

    Traveling through potential energy landscapes of disordered materials: the activation-relaxation technique

    Full text link
    A detailed description of the activation-relaxation technique (ART) is presented. This method defines events in the configurational energy landscape of disordered materials, such as a-Si, glasses and polymers, in a two-step process: first, a configuration is activated from a local minimum to a nearby saddle-point; next, the configuration is relaxed to a new minimum; this allows for jumps over energy barriers much higher than what can be reached with standard techniques. Such events can serve as basic steps in equilibrium and kinetic Monte Carlo schemes.Comment: 7 pages, 2 postscript figure

    Dynamic exchange-correlation potentials for the electron gas in dimensionality D=3 and D=2

    Full text link
    Recent progress in the formulation of a fully dynamical local approximation to time-dependent Density Functional Theory appeals to the longitudinal and transverse components of the exchange and correlation kernel in the linear current-density response of the homogeneous fluid at long wavelength. Both components are evaluated for the electron gas in dimensionality D=3 and D=2 by an approximate decoupling in the equation of motion for the current density, which accounts for processes of excitation of two electron-hole pairs. Each pair is treated in the random phase approximation, but the role of exchange and correlation is also examined; in addition, final-state exchange processes are included phenomenologically so as to satisfy the exactly known high-frequency behaviours of the kernel. The transverse and longitudinal spectra involve the same decay channels and are similar in shape. A two-plasmon threshold in the spectrum for two-pair excitations in D=3 leads to a sharp minimum in the real part of the exchange and correlation kernel at twice the plasma frequency. In D=2 the same mechanism leads to a broad spectral peak and to a broad minimum in the real part of the kernel, as a consequence of the dispersion law of the plasmon vanishing at long wavelength. The numerical results have been fitted to simple analytic functions.Comment: 13 pages, 11 figures included. Accepted for publication in Phys. Rev.

    Glass breaks like metals, but at the nanometer scale

    Full text link
    We report in situ Atomic Force Microscopy experiments which reveal the presence of nanoscale damage cavities ahead of a stress-corrosion crack tip in glass. Their presence might explain the departure from linear elasticity observed in the vicinity of a crack tip in glass. Such a ductile fracture mechanism, widely observed in the case of metallic materials at the micrometer scale, might be also at the origin of the striking similarity of the morphologies of fracture surfaces of glass and metallic alloys at different length scales.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Lett, few minor corrections, Fig. 1b change

    Ionization degree of the electron-hole plasma in semiconductor quantum wells

    Get PDF
    The degree of ionization of a nondegenerate two-dimensional electron-hole plasma is calculated using the modified law of mass action, which takes into account all bound and unbound states in a screened Coulomb potential. Application of the variable phase method to this potential allows us to treat scattering and bound states on the same footing. Inclusion of the scattering states leads to a strong deviation from the standard law of mass action. A qualitative difference between mid- and wide-gap semiconductors is demonstrated. For wide-gap semiconductors at room temperature, when the bare exciton binding energy is of the order of T, the equilibrium consists of an almost equal mixture of correlated electron-hole pairs and uncorrelated free carriers.Comment: 22 pages, 6 figure

    What are the experimentally observable effects of vertex corrections in superconductors?

    Full text link
    We calculate the effects of vertex corrections, of non-constant density of states and of a (self-consistently determined) phonon self-energy for the Holstein model on a 3D cubic lattice. We replace vertex corrections with a Coulomb pseudopotential, mu*, adjusted to give the same Tc, and repeat the calculations, to see which effects are a distinct feature of vertex corrections. This allows us to determine directly observable effects ofvertex corrections on a variety of thermodynamic properties of superconductors. To this end, we employ conserving approximations (in the local approximation) to calculate the superconducting critical temperatures, isotope coefficients, superconducting gaps, free-energy differences and thermodynamic critical fields for a range of parameters. We find that the dressed value of lambda is significantly larger than the bare value. While vertex corrections can cause significant changes in all the above quantities (even whenthe bare electron-phonon coupling is small), the changes can usually be well-modeled by an appropriate Coulomb pseudopotential. The isotope coefficient proves to be the quantity that most clearly shows effects of vertex corrections that can not be mimicked by a mu*.Comment: 28 pages, 12 figure

    Simulation of thermal conductivity and heat transport in solids

    Full text link
    Using molecular dynamics (MD) with classical interaction potentials we present calculations of thermal conductivity and heat transport in crystals and glasses. Inducing shock waves and heat pulses into the systems we study the spreading of energy and temperature over the configurations. Phonon decay is investigated by exciting single modes in the structures and monitoring the time evolution of the amplitude using MD in a microcanonical ensemble. As examples, crystalline and amorphous modifications of Selenium and SiO2\rm{SiO_2} are considered.Comment: Revtex, 8 pages, 11 postscript figures, accepted for publication in PR

    Local field factors in a polarized two-dimensional electron gas

    Get PDF
    We derive approximate expressions for the static local field factors of a spin polarized two-dimensional electron gas which smoothly interpolate between their small- and large-wavevector asymptotic limits. For the unpolarized electron gas, the proposed analytical expressions reproduce recent diffusion Monte Carlo data. We find that the degree of spin polarization produces important modifications to the local factors of the minority spins, while the local field functions of the majority spins are less affected.Comment: 8 pages, 10 figure

    Antioksidativni potencijal i sposobnost hvatanja slobodnih radikala metanolnog ekstrakta plodova Citrullus colocynthis (L.) Schrad.

    Get PDF
    Citrullus colocynthis (L.) Schrad. (Cucurbitaceae) is a medicinal plant traditionally used as an abortifacient and to treat constipation, oedema, bacterial infections, cancer and diabetes. Preliminary phytochemical screening of the plant showed the presence of large amounts of phenolics and flavonoids. Subsequent quantification showed the presence of 0.74% phenolics (calculated as gallic acid) and 0.13% flavonoids calculated as catechin equivalents per 100 g of fresh mass. The presence of phenolic compounds prompted us to evaluate its antioxidant activity. In the present study, methanolic fruit extract of C. colocynthis was screened to evaluate its free-radical scavenging ability. The highest antioxidant and free radical scavenging effect of the fruit extract was observed at a concentration of 2500 µg mL1.Citrullus colocynthis (L.) Schrad. (Cucurbitaceae) je ljekovita biljka koja se tradicionalno upotrebljava kao abortiv i za liječenje konstipacije, edema, bakterijskih infekcija, karcinoma i dijabetesa. Preliminarno fitokemijsko pretraživanje ukazalo je na prisutnost velikih količina fenola i flavonoida. Udio fenola bio je 0,74% (preračunato na galnu kiselinu), a flavonoida 0,13% preračunato na ekvivalente katehina na 100 g svježe mase. Zbog prisutnosti fenolnih spojeva ispitivano je antioksidativno djelovanje i sposobnost hvatanja slobodnih radikala metanolnog ekstrakta plodova. Koncentracija 2500 µg mL1 imala je najjači učinak

    Knock-Down of Cathepsin D Affects the Retinal Pigment Epithelium, Impairs Swim-Bladder Ontogenesis and Causes Premature Death in Zebrafish

    Get PDF
    The lysosomal aspartic protease Cathepsin D (CD) is ubiquitously expressed in eukaryotic organisms. CD activity is essential to accomplish the acid-dependent extensive or partial proteolysis of protein substrates within endosomal and lysosomal compartments therein delivered via endocytosis, phagocytosis or autophagocytosis. CD may also act at physiological pH on small-size substrates in the cytosol and in the extracellular milieu. Mouse and fruit fly CD knock-out models have highlighted the multi-pathophysiological roles of CD in tissue homeostasis and organ development. Here we report the first phenotypic description of the lack of CD expression during zebrafish (Danio rerio) development obtained by morpholino-mediated knock-down of CD mRNA. Since the un-fertilized eggs were shown to be supplied with maternal CD mRNA, only a morpholino targeting a sequence containing the starting ATG codon was effective. The main phenotypic alterations produced by CD knock-down in zebrafish were: 1. abnormal development of the eye and of retinal pigment epithelium; 2. absence of the swim-bladder; 3. skin hyper-pigmentation; 4. reduced growth and premature death. Rescue experiments confirmed the involvement of CD in the developmental processes leading to these phenotypic alterations. Our findings add to the list of CD functions in organ development and patho-physiology in vertebrates
    corecore