1,748 research outputs found

    Meson decay in the Fock-Tani Formalism

    Full text link
    The Fock-Tani formalism is a first principle method to obtain effective interactions from microscopic Hamiltonians. Usually this formalism was applied to scattering, here we introduced it to calculate partial decay widths for mesons.Comment: Presented at HADRON05 XI. "International Conference on Hadron Spectroscopy" Rio de Janeiro, Brazil, August 21 to 26, 200

    Glueball-glueball scattering in a constituent gluon model

    Get PDF
    In this work we use a mapping technique to derive in the context of a constituent gluon model an effective Hamiltonian that involves explicit gluon degrees of freedom. We study glueballs with two gluons using the Fock-Tani formalism. In the present work we consider two possibilities for 0++0^{++}: (i) as a pure ssˉs\bar{s} and calculate, in the context of a quark interchange picture, the cross-section; (ii) as a glueball where a new calculation for this cross-section is made, in the context of the constituent gluon model, with gluon interchange.Comment: Proceedings of the International Workshop IX Hadron Physics and VII Relativistic Aspects of Nuclear Physics (HADRON-RANP 2004

    Measuring Nonequilibrium Temperature of Forced Oscillators

    Get PDF
    The meaning of temperature in nonequilibrium thermodynamics is considered by using a forced harmonic oscillator in a heat bath, where we have two effective temperatures for the position and the momentum, respectively. We invent a concrete model of a thermometer to testify the validity of these different temperatures from the operational point of view. It is found that the measured temperature depends on a specific form of interaction between the system and a thermometer, which means the zeroth law of thermodynamics cannot be immediately extended to nonequilibrium cases.Comment: 8 page

    Nonequilibrium Temperature and Thermometry in Heat-Conducting Phi-4 Models

    Full text link
    We analyze temperature and thermometry for simple nonequilibrium heat-conducting models. We show in detail, for both two- and three-dimensional systems, that the ideal gas thermometer corresponds to the concept of a local instantaneous mechanical kinetic temperature. For the Phi-4 models investigated here the mechanical temperature closely approximates the local thermodynamic equilibrium temperature. There is a significant difference between kinetic temperature and the nonlocal configurational temperature. Neither obeys the predictions of extended irreversible thermodynamics. Overall, we find that kinetic temperature, as modeled and imposed by the Nos\'e-Hoover thermostats developed in 1984, provides the simplest means for simulating, analyzing, and understanding nonequilibrium heat flows.Comment: 20 pages with six figures, revised following review at Physical Review
    corecore