5 research outputs found
The progression rate of spinocerebellar ataxia type 2 changes with stage of disease
BACKGROUND: Spinocerebellar ataxia type 2 (SCA2) affects several neurological structures, giving rise to multiple symptoms. However, only the natural history of ataxia is well known, as measured during the study duration. We aimed to describe the progression rate of ataxia, by the Scale for the Assessment and Rating of Ataxia (SARA), as well as the progression rate of the overall neurological picture, by the Neurological Examination Score for Spinocerebellar Ataxias (NESSCA), and not only during the study duration but also in a disease duration model. Comparisons between these models might allow us to explore whether progression is linear during the disease duration in SCA2; and to look for potential modifiers. RESULTS: Eighty-eight evaluations were prospectively done on 49 symptomatic subjects; on average (SD), study duration and disease duration models covered 13 (2.16) months and 14 (6.66) years of individuals' life, respectively. SARA progressed 1.75 (CI 95%: 0.92-2.57) versus 0.79 (95% CI 0.45 to 1.14) points/year in the study duration and disease duration models. NESSCA progressed 1.45 (CI 95%: 0.74-2.16) versus 0.41 (95% CI 0.24 to 0.59) points/year in the same models. In order to explain these discrepancies, the progression rates of the study duration model were plotted against disease duration. Then an acceleration was detected after 10 years of disease duration: SARA scores progressed 0.35 before and 2.45 points/year after this deadline (p = 0.013). Age at onset, mutation severity, and presence of amyotrophy, parkinsonism, dystonic manifestations and cognitive decline at baseline did not influence the rate of disease progression. CONCLUSIONS: NESSCA and SARA progression rates were not constant during disease duration in SCA2: early phases of disease were associated with slower progressions. Modelling of future clinical trials on SCA2 should take this phenomenon into account, since disease duration might impact on inclusion criteria, sample size, and study duration. Our database is available online and accessible to future studies aimed to compare the present data with other cohorts
Geometría y pérdidas de carga en inyectores Venturi mediante la dinámica de fluidos computacional
[EN] To determine the influence of geometry on the hydrodynamic behavior of Venturi injectors, using computational fluid dynamics techniques, we studied, at the Universitat Politècnica de València, Valencia, Spain, the geometric parameters that exert the most influence on head losses: the relationship between throat diameter and nozzle (β), nozzle angle (α1) and diffuser angle (α2). In addition, three throat morphologies (B1: nozzle-throat and throat-diffuser with a sharp edge; B2: nozzle-diffuser with a zero-length, sharp-edge throat; B3: nozzle-throat and throat-diffuser with rounded edge). We analyzed their influence on the velocity distribution and differential pressure between inlet and throat (DP/γ), throat and outlet (Δhv/γ), and outlet and throat ((P3-P2)/γ). The development of the velocity profile from the throat is slower the greater β is and the lower α2 is. DP/γ decreases with β, increases with α1 and varies little with α2. Δhv/γ decreases with β and increases with α1 and α2. (P3-P2)/γ decreases with β and increases with α1 and α2. Geometry B3 decreases the losses and delays the onset of cavitation. Thus, the lower β and the higher α2, the greater the losses; however, the influence of α1 is less clear. The rounded edges produce lower head losses.[ES] Estudio de la influencia de la geometría en el comportamiento hidrodinámico de
inyectores Venturi mediante técnicas de dinámica de fluidos computacional.
Para determinar la influencia de la geometría en el comportamiento hidrodinámico de inyectores Venturi, mediante técnicas de dinámica de fluidos computacional, se estudió, en la Universitat Politècnica de València, Valencia, España, los parámetros geométricos que más influencian las pérdidas de carga: relación entre diámetro de la garganta y tobera (β), ángulo de la tobera (α1) y ángulo del difusor (α2). Además, tres morfologías de la garganta (B1: tobera-garganta y garganta-difusor en arista viva; B2: tobera-difusor con garganta de longitud nula y en arista viva; B3: tobera-garganta y garganta-difusor en arista redondeadas). Se ha analizado su influencia en la distribución de velocidad y en la presión diferencial entre entrada y garganta (DP/γ), garganta y salida (∆hv/γ), y salida y garganta ((P3-P2)/γ). El desarrollo del perfil de velocidades a partir de la garganta es más lento cuanto mayor es β y menor es α2. DP/γ disminuye con β, aumenta con α1 y es poco variable con α2. ∆hv/γ disminuye con β y aumenta con α1 y α2. (P3-P2)/γ disminuye con β y α1, yaumenta con y α2. La geometría B3 disminuye las pérdidas y retarda la aparición de la cavitación. Así, cuanto menor es β y cuanto mayor es α2, mayores son las pérdidas de carga, sin embargo, la influencia de α1 no es tan clara. Las aristas redondeadas producen menores perdidas de cargaThe authors would like to thank the “Conselleria d'Empresa, Universitat i Ciència” of Generalitat Valenciana – Spain.Manzano Juarez, J.; Palau, CV.; De Azevedo, BM.; Do Bomfim, GV.; Vasconcelos, DV. (2016). Geometry and head loss in Venturi injectors through Computational Fluid Dynamics. Engenharia Agrícola. 36(3):482-491. doi:10.1590/1809-4430-Eng.Agric.v36n3p482-491/2016S482491363Baylar, A., Aydin, M., Unsal, M., & Ozkan, F. (2009). Numerical Modeling of Venturi Flows for Determining Air Injection Rates Using Fluent V6.2. Mathematical and Computational Applications, 14(2), 97-108. doi:10.3390/mca14020097Chan, L., Chin, C., Soria, J., & Ooi, A. (2014). Large eddy simulation and Reynolds-averaged Navier-Stokes calculations of supersonic impinging jets at varying nozzle-to-wall distances and impinging angles. International Journal of Heat and Fluid Flow, 47, 31-41. doi:10.1016/j.ijheatfluidflow.2014.02.005Dantas Neto, J., Maciel, J. L., Alves, A. de S., Azevedo, C. A. V. de, Fernandes, P. D., & Lima, V. L. A. de. (2013). Teores de macronutrientes em folhas de goiabeira fertirrigada com nitrogênio. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(9), 962-968. doi:10.1590/s1415-43662013000900008Rezende, R., Helbel Júnior, C., Souza, R. S. de, Antunes, F. M., & Frizzone, J. A. (2010). Crescimento inicial de duas cultivares de cafeeiro em diferentes regimes hídricos e dosagens de fertirrigação. Engenharia Agrícola, 30(3), 447-458. doi:10.1590/s0100-69162010000300009Sanderse, B., Pijl, S. P., & Koren, B. (2011). Review of computational fluid dynamics for wind turbine wake aerodynamics. Wind Energy, 14(7), 799-819. doi:10.1002/we.458Santos, L. D. C., Zocoler, J. L., Justi, A. L., Silva, A. O., & Correia, J. D. S. (2012). ESTUDO COMPARATIVO DA TAXA DE INJEÇÃO EM INJETOR DO TIPO VENTURI COM E SEM VÁLVULA DE RETENÇÃO. IRRIGA, 1(01), 145. doi:10.15809/irriga.2012v1n01p145Sun, Y., & Niu, W. (2012). Simulating the Effects of Structural Parameters on the Hydraulic Performances of Venturi Tube. Modelling and Simulation in Engineering, 2012, 1-7. doi:10.1155/2012/458368Uribe, R. A. M., Gava, G. J. de C., Saad, J. C. C., & Kölln, O. T. (2013). Ratoon sugarcane yield integrated drip-irrigation and nitrogen fertilization. Engenharia Agrícola, 33(6), 1124-1133. doi:10.1590/s0100-69162013000600005Vasata, D., Galante, G., Rizzi, R. L., & Zara, R. A. (2011). Solução computacional do problema da cavidade cúbica através das equações de Navier-Stokes tridimensionais. Revista Brasileira de Ensino de Física, 33(2), 1-10. doi:10.1590/s1806-11172011000200013Yeoh, G. H., Liu, C., Tu, J., & Timchenko, V. (2012). Computational Fluid Dynamics and Its Applications 2012. Modelling and Simulation in Engineering, 2012, 1-2. doi:10.1155/2012/61061
