277 research outputs found

    Projecting Future Heat-Related Mortality under Climate Change Scenarios: A Systematic Review

    Get PDF
    Background: Heat-related mortality is a matter of great public health concern, especially in the light of climate change. Although many studies have found associations between high temperatures and mortality, more research is needed to project the future impacts of climate change on heat-related mortality

    Non-Penetrance for Ocular Phenotype in Two Individuals Carrying Heterozygous Loss-of-Function ZEB1 Alleles

    Get PDF
    ZEB1 loss-of-function (LoF) alleles are known to cause a rare autosomal dominant disorder—posterior polymorphous corneal dystrophy type 3 (PPCD3). To date, 50 pathogenic LoF variants have been identified as disease-causing and familial studies have indicated that the PPCD3 phenotype is penetrant in approximately 95% of carriers. In this study, we interrogated in-house exomes (n = 3616) and genomes (n = 88) for the presence of putative heterozygous LoF variants in ZEB1. Next, we performed detailed phenotyping in a father and his son who carried a novel LoF c.1279C>T; p.(Glu427*) variant in ZEB1 (NM_030751.6) absent from the gnomAD v.2.1.1 dataset. Ocular examination of the two subjects did not show any abnormalities characteristic of PPCD3. GnomAD (n = 141,456 subjects) was also interrogated for LoF ZEB1 variants, notably 8 distinct heterozygous changes presumed to lead to ZEB1 haploinsufficiency, not reported to be associated with PPCD3, have been identified. The NM_030751.6 transcript has a pLI score ≥ 0.99, indicating extreme intolerance to haploinsufficiency. In conclusion, ZEB1 LoF variants are present in a general population at an extremely low frequency. As PPCD3 can be asymptomatic, the true penetrance of ZEB1 LoF variants remains currently unknown but is likely to be lower than estimated by the familial led approaches adopted to date

    Validating atlas-based lesion disconnectomics in multiple sclerosis: A retrospective multi-centric study.

    Get PDF
    The translational potential of MR-based connectivity modelling is limited by the need for advanced diffusion imaging, which is not part of clinical protocols for many diseases. In addition, where diffusion data is available, brain connectivity analyses rely on tractography algorithms which imply two major limitations. First, tracking algorithms are known to be sensitive to the presence of white matter lesions and therefore leading to interpretation pitfalls and poor inter-subject comparability in clinical applications such as multiple sclerosis. Second, tractography quality is highly dependent on the acquisition parameters of diffusion sequences, leading to a trade-off between acquisition time and tractography precision. Here, we propose an atlas-based approach to study the interplay between structural disconnectivity and lesions without requiring individual diffusion imaging. In a multi-centric setting involving three distinct multiple sclerosis datasets (containing both 1.5 T and 3 T data), we compare our atlas-based structural disconnectome computation pipeline to disconnectomes extracted from individual tractography and explore its clinical utility for reducing the gap between radiological findings and clinical symptoms in multiple sclerosis. Results using topological graph properties showed that overall, our atlas-based disconnectomes were suitable approximations of individual disconnectomes from diffusion imaging. Small-worldness was found to decrease for larger total lesion volumes thereby suggesting a loss of efficiency in brain connectivity of MS patients. Finally, the global efficiency of the created brain graph, combined with total lesion volume, allowed to stratify patients into subgroups with different clinical scores in all three cohorts

    Novel disease-causing variants and phenotypic features of X-linked megalocornea

    Get PDF
    Purpose: The aim of the study was to describe the phenotype and molecular genetic causes of X-linked megalocornea (MGC1). We recruited four British, one New Zealand, one Vietnamese and four Czech families. // Methods: All probands and three female carriers underwent ocular examination and Sanger sequencing of the CHRDL1 gene. Two of the probands also had magnetic resonance imaging (MRI) of the brain. // Results: We identified nine pathogenic or likely pathogenic and one variant of uncertain significance in CHRDL1, of which eight are novel. Three probands had ocular findings that have not previously been associated with MGC1, namely pigmentary glaucoma, unilateral posterior corneal vesicles, unilateral keratoconus and unilateral Fuchs heterochromic iridocyclitis. The corneal diameters of the three heterozygous carriers were normal, but two had abnormally thin corneas, and one of these was also diagnosed with unilateral keratoconus. Brain MRI identified arachnoid cysts in both probands, one also had a neuroepithelial cyst, while the second had a midsagittal neurodevelopmental abnormality (cavum septum pellucidum et vergae). // Conclusion: The study expands the spectrum of pathogenic variants and the ocular and brain abnormalities that have been identified in individuals with MGC1. Reduced corneal thickness may represent a mild phenotypic feature in some heterozygous female carriers of CHRDL1 pathogenic variants

    Ambient Temperature and Morbidity: A Review of Epidemiological Evidence

    Get PDF
    Objective: In this paper, we review the epidemiological evidence on the relationship between ambient temperature and morbidity. We assessed the methodological issues in previous studies and proposed future research directions

    Tract-wise microstructural analysis informs on current and future disability in early multiple sclerosis.

    Get PDF
    Microstructural characterization of patients with multiple sclerosis (MS) has been shown to correlate better with disability compared to conventional radiological biomarkers. Quantitative MRI provides effective means to characterize microstructural brain tissue changes both in lesions and normal-appearing brain tissue. However, the impact of the location of microstructural alterations in terms of neuronal pathways has not been thoroughly explored so far. Here, we study the extent and the location of tissue changes probed using quantitative MRI along white matter (WM) tracts extracted from a connectivity atlas. We quantified voxel-wise T1 tissue alterations compared to normative values in a cohort of 99 MS patients. For each WM tract, we extracted metrics reflecting tissue alterations both in lesions and normal-appearing WM and correlated these with cross-sectional disability and disability evolution after 2 years. In early MS patients, T1 alterations in normal-appearing WM correlated better with disability evolution compared to cross-sectional disability. Further, the presence of lesions in supratentorial tracts was more strongly associated with cross-sectional disability, while microstructural alterations in infratentorial pathways yielded higher correlations with disability evolution. In progressive patients, all major WM pathways contributed similarly to explaining disability, and correlations with disability evolution were generally poor. We showed that microstructural changes evaluated in specific WM pathways contribute to explaining future disability in early MS, hence highlighting the potential of tract-wise analyses in monitoring disease progression. Further, the proposed technique allows to estimate WM tract-specific microstructural characteristics in clinically compatible acquisition times, without the need for advanced diffusion imaging

    Tobacco smoking changes during the first pre-vaccination phases of the COVID-19 pandemic: A systematic review and meta-analysis

    Get PDF
    Background: Globally, tobacco smoking remains the largest preventable cause of premature death. The COVID-19 pandemic has forced nations to take unprecedented measures, including ‘lockdowns’ that might impact tobacco smoking behaviour. We performed a systematic review and meta-analyses to assess smoking behaviour changes during the early pre-vaccination phases of the COVID-19 pandemic in 2020. Methods: We searched Medline/Embase/PsycINFO/BioRxiv/MedRxiv/SSRN databases (January–November 2020) for published and pre-print articles that reported specific smoking behaviour changes or intentions after the onset of the COVID-19 pandemic. We used random-effects models to pool prevalence ratios comparing the prevalence of smoking during and before the pandemic, and the prevalence of smoking behaviour changes during the pandemic. The PROSPERO registration number for this systematic review was CRD42020206383. Findings: 31 studies were included in meta-analyses, with smoking data for 269,164 participants across 24 countries. The proportion of people smoking during the pandemic was lower than that before, with a pooled prevalence ratio of 0·87 (95%CI:0·79–0·97). Among people who smoke, 21% (95%CI:14–30%) smoked less, 27% (95%CI:22–32%) smoked more, 50% (95%CI:41%-58%) had unchanged smoking and 4% (95%CI:1–9%) reported quitting smoking. Among people who did not smoke, 2% (95%CI:1–3%) started smoking during the pandemic. Heterogeneity was high in all meta-analyses and so the pooled estimates should be interpreted with caution (I2\u3e91% and p-heterogeneity\u3c0·001). Almost all studies were at high risk of bias due to use of non-representative samples, non-response bias, and utilisation of non-validated questions. Interpretation: Smoking behaviour changes during the first phases of the COVID-19 pandemic in 2020 were highly mixed. Meta-analyses indicated that there was a relative reduction in overall smoking prevalence during the pandemic, while similar proportions of people who smoke smoked more or smoked less, although heterogeneity was high. Implementation of evidence-based tobacco control policies and programs, including tobacco cessation services, have an important role in ensuring that the COVID-19 pandemic does not exacerbate the smoking pandemic and associated adverse health outcomes

    Prognostic value of single-subject grey matter networks in early multiple sclerosis

    Get PDF
    The identification of prognostic markers in early multiple sclerosis (MS) is challenging and requires reliable measures that robustly predict future disease trajectories. Ideally, such measures should make inferences at the individual level to inform clinical decisions. This study investigated the prognostic value of longitudinal structural networks to predict five-year EDSS progression in patients with relapsing-remitting MS (RRMS). We hypothesized that network measures, derived from magnetic resonance imaging (MRI), outperform conventional MRI measurements at identifying patients at risk of developing disability progression. This longitudinal, multicentre study within the Magnetic Resonance Imaging in MS (MAGNIMS) network included 406 patients with RRMS (mean age = 35.7 ± 9.1 years) followed up for five years (mean follow-up = 5.0 ± 0.6 years). Expanded Disability Status Scale (EDSS) was determined to track disability accumulation. A group of 153 healthy subjects (mean age = 35.0 ± 10.1 years) with longitudinal MRI served as controls. All subjects underwent MRI at baseline and again one year after baseline. Grey matter (GM) atrophy over one year and white matter (WM) lesion load were determined. A single-subject brain network was reconstructed from T1-weighted scans based on GM atrophy measures derived from a statistical parameter mapping (SPM)-based segmentation pipeline. Key topological measures, including network degree, global efficiency and transitivity, were calculated at single-subject level to quantify network properties related to EDSS progression. Areas under receiver operator characteristic (ROC) curves were constructed for GM atrophy, WM lesion load and the network measures, and comparisons between ROC curves were conducted. The applied network analyses differentiated patients with RRMS who experience EDSS progression over five years through lower values for network degree [H(2)=30.0, p<0.001] and global efficiency [H(2)=31.3, p<0.001] from healthy controls but also from patients without progression. For transitivity, the comparisons showed no difference between the groups (H(2)= 1.5, p=0.474). Most notably, changes in network degree and global efficiency were detected independent of disease activity in the first year. The described network reorganization in patients experiencing EDSS progression was evident in the absence of GM atrophy. Network degree and global efficiency measurements demonstrated superiority of network measures in the ROC analyses over GM atrophy and WM lesion load in predicting EDSS worsening (all p-values < 0.05). Our findings provide evidence that GM network reorganization over one year discloses relevant information about subsequent clinical worsening in RRMS. Early GM restructuring towards lower network efficiency predicts disability accumulation and outperforms conventional MRI predictors
    corecore