526 research outputs found

    Qualifying and quantifying offshore wind farm-generated noise

    Get PDF
    The construction, operation and dismantling of offshore wind farms generate noise both above and under water that may be of environmental concern. The maximum detected sound power level of the above water pin piling noise for example, reached 145 dB(A), while the operational sound power level amounted to 105-115 dB(A) at high wind speed. Underwater construction noise was close to ambient noise levels for gravity based foundations (about 115 dB re 1 µPa RMS), while pin piling and especially monopile piling produced excessive levels of underwater noise up to 194 dB re 1 µPa (zero to peak level at 750m), attenuating to ambient noise levels at a distance of up to 70 km. Whether or not such noise levels are to be considered acceptable will depend on the future implementation of proposed regulations into the Belgian legislation

    Optimising the future Belgian offshore wind farm monitoring programme

    Get PDF
    Six years of monitoring triggered a reflection on how to best continue with the monitoring programme. The basic monitoring has to be rationalised at the level of the likelihood of impact detection, the meaningfulness of impact size and representativeness of the findings. Targeted monitoring should continue to disentangle processes behind the observed impact, for instance the overarching artificial reef effect created by wind farms. The major challenge however remains to achieve a reliable assessment of the cumulative impacts. Continuing consultation and collaboration within the Belgian offshore wind farm monitoring team and with foreign marine scientists and managers will ensure an optimisation of the future monitoring programme

    Differences between urban and rural hedges in England revealed by a citizen science project

    Get PDF
    Background: Hedges are oth ecologically and culturally important and are a distinctive feature of the British landscape. However the overall length of hedges across Great Britain is decreasing. Current challenges in studying hedges relate to the dominance of research on rural, as opposed to urban, hedges, and their variability and geographical breadth. To help address these challenges and to educate the public on the importance of hedge habitats for wildlife, in 2010 the Open Air Laboratories (OPAL) programme coordinated a hedge-focused citizen science survey. Results: Results from 2891 surveys were analysed. Woody plant species differed significantly between urban and rural areas. Beech, Holly, Ivy, Laurel, Privet and Yew were more commonly recorded in urban hedges whereas Blackthorn, Bramble, Dog Rose, Elder and Hawthorn were recorded more often in rural hedges. Urban and rural differences were shown for some groups of invertebrates. Ants, earwigs and shieldbugs were recorded more frequently in urban hedges whereas blowflies, caterpillars, harvestmen, other beetles, spiders and weevils were recorded more frequently in rural hedges. Spiders were the most frequently recorded invertebrate across all surveys. The presence of hard surfaces adjacent to the hedge was influential on hedge structure, number and diversity of plant species, amount of food available for wildlife and invertebrate number and diversity. In urban hedges with one adjacent hard surface, the food available for wildlife was significantly reduced and in rural hedges, one adjacent hard surface affected the diversity of invertebrates. Conclusions: This research highlights that urban hedges may be important habitats for wildlife and that hard surfaces may have an impact on both the number and diversity of plant species and the number and diversity of invertebrates. This study demonstrates that citizen science programmes that focus on hedge surveillance can work and have the added benefit of educating the public on the importance of hedgerow habitats
    corecore