3,430 research outputs found
Activity ageing in growing networks
We present a model for growing information networks where the ageing of a
node depends on the time at which it entered the network and on the last time
it was cited. The model is shown to undergo a transition from a small-world to
large-world network. The degree distribution may exhibit very different shapes
depending on the model parameters, e.g. delta-peaked, exponential or power-law
tailed distributions.Comment: 9 pages, 2 figure
Logarithmic growth dynamics in software networks
In a recent paper, Krapivsky and Redner (Phys. Rev. E, 71 (2005) 036118)
proposed a new growing network model with new nodes being attached to a
randomly selected node, as well to all ancestors of the target node. The model
leads to a sparse graph with an average degree growing logarithmically with the
system size. Here we present compeling evidence for software networks being the
result of a similar class of growing dynamics. The predicted pattern of network
growth, as well as the stationary in- and out-degree distributions are
consistent with the model. Our results confirm the view of large-scale software
topology being generated through duplication-rewiring mechanisms. Implications
of these findings are outlined.Comment: 7 pages, 3 figures, published in Europhysics Letters (2005
Two dimensional XXZ-Ising model on square-hexagon lattice
We study a two dimensional XXZ-Ising on square-hexagon (4-6) lattice with
spin-1/2. The phase diagram of the ground state energy is discussed, shown two
different ferrimagnetic states and two type of antiferromagnetic states, beside
of a ferromagnetic state. To solve this model, it could be mapped into the
eight-vertex model with union jack interaction term. Imposing exact solution
condition we find the region where the XXZ-Ising model on 4-6 lattice have
exact solutions with one free parameter, for symmetric eight-vertex model
condition. In this sense we explore the properties of the system and analyze
the competition of the interaction parameters providing the region where it has
an exact solution. However the present model does not satisfy the \textit{free
fermion} condition, unless for a trivial situation. Even so we are able to
discuss their critical points region, when the exactly solvable condition is
ignored.Comment: 5 pages, 5 figure
Hole burning in a nanomechanical resonator coupled to a Cooper pair box
We propose a scheme to create holes in the statistical distribution of
excitations of a nanomechanical resonator. It employs a controllable coupling
between this system and a Cooper pair box. The success probability and the
fidelity are calculated and compared with those obtained in the atom-field
system via distinct schemes. As an application we show how to use the
hole-burning scheme to prepare (low excited) Fock states.Comment: 7 pages, 10 figure
Toward Business Integrity Modeling and Analysis Framework for Risk Measurement and Analysis
Financialization has contributed to economic growth but has caused scandals, misselling, rogue trading, tax evasion, and market speculation. To a certain extent, it has also created problems in social and economic instability. It is an important aspect of Enterprise Security, Privacy, and Risk (ESPR), particularly in risk research and analysis. In order to minimize the damaging impacts caused by the lack of regulatory compliance, governance, ethical responsibilities, and trust, we propose a Business Integrity Modeling and Analysis (BIMA) framework to unify business integrity with performance using big data predictive analytics and business intelligence. Comprehensive services include modeling risk and asset prices, and consequently, aligning them with business strategies, making our services, according to market trend analysis, both transparent and fair. The BIMA framework uses Monte Carlo simulation, the Black–Scholes–Merton model, and the Heston model for performing financial, operational, and liquidity risk analysis and present outputs in the form of analytics and visualization. Our results and analysis demonstrate supplier bankruptcy modeling, risk pricing, high-frequency pricing simulations, London Interbank Offered Rate (LIBOR) rate simulation, and speculation detection results to provide a variety of critical risk analysis. Our approaches to tackle problems caused by financial services and the operational risk clearly demonstrate that the BIMA framework, as the outputs of our data analytics research, can effectively combine integrity and risk analysis together with overall business performance and can contribute to operational risk research
Detecting Features from Confusion Matrices using Generalized Formal Concept Analysis
We claim that the confusion matrices of multiclass problems can be analyzed by means of a generalization of Formal Concept Analysis to obtain symbolic information about the feature sets of the underlying classification task.We prove our claims by analyzing the confusion matrices of human speech perception experiments and comparing our results to those elicited by experts.This work has been supported by Spanish Government-Comisión Interministerial de Ciencia y Tecnología TEC2008-02473/TEC y TEC2008-06382/TEC.Publicad
Relativistic particle dynamics in D=2+1
We propose a SUSY variant of the action for a massless spinning particles via
the inclusion of twistor variables. The action is constructed to be invariant
under SUSY transformations and -reparametrizations even when an
interaction field is including. The constraint analysis is achieved and the
equations of motion are derived. The commutation relations obtained for the
commuting spinor variables show that the particle states have
fractional statistics and spin. At once we introduce a possible massive term
for the non-interacting model.Comment: 11 page
Scale-free Networks from Optimal Design
A large number of complex networks, both natural and artificial, share the
presence of highly heterogeneous, scale-free degree distributions. A few
mechanisms for the emergence of such patterns have been suggested, optimization
not being one of them. In this letter we present the first evidence for the
emergence of scaling (and smallworldness) in software architecture graphs from
a well-defined local optimization process. Although the rules that define the
strategies involved in software engineering should lead to a tree-like
structure, the final net is scale-free, perhaps reflecting the presence of
conflicting constraints unavoidable in a multidimensional optimization process.
The consequences for other complex networks are outlined.Comment: 6 pages, 2 figures. Submitted to Europhysics Letters. Additional
material is available at http://complex.upc.es/~sergi/software.ht
Shallow vs deep learning architectures for white matter lesion segmentation in the early stages of multiple sclerosis
In this work, we present a comparison of a shallow and a deep learning
architecture for the automated segmentation of white matter lesions in MR
images of multiple sclerosis patients. In particular, we train and test both
methods on early stage disease patients, to verify their performance in
challenging conditions, more similar to a clinical setting than what is
typically provided in multiple sclerosis segmentation challenges. Furthermore,
we evaluate a prototype naive combination of the two methods, which refines the
final segmentation. All methods were trained on 32 patients, and the evaluation
was performed on a pure test set of 73 cases. Results show low lesion-wise
false positives (30%) for the deep learning architecture, whereas the shallow
architecture yields the best Dice coefficient (63%) and volume difference
(19%). Combining both shallow and deep architectures further improves the
lesion-wise metrics (69% and 26% lesion-wise true and false positive rate,
respectively).Comment: Accepted to the MICCAI 2018 Brain Lesion (BrainLes) worksho
Topology and Evolution of Technology Innovation Networks
The web of relations linking technological innovation can be fairly described
in terms of patent citations. The resulting patent citation network provides a
picture of the large-scale organization of innovations and its time evolution.
Here we study the patterns of change of patents registered by the US Patent and
Trademark Office (USPTO). We show that the scaling behavior exhibited by this
network is consistent with a preferential attachment mechanism together with a
Weibull-shaped aging term. Such attachment kernel is shared by scientific
citation networks, thus indicating an universal type of mechanism linking ideas
and designs and their evolution. The implications for evolutionary theory of
innovation are discussed.Comment: 6 pages, 5 figures, submitted to Physical Review
- …