Detecting Features from Confusion Matrices
using Generalized Formal Concept Analysis
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Abstract. We claim that the confusion matrices of multiclass problems
can be analyzed by means of a generalization of Formal Concept Analysis
to obtain symbolic information about the feature sets of the underlying
classification task. We prove our claims by analyzing the confusion matri-
ces of human speech perception experiments and comparing our results
to those elicited by experts.

1 DMotivation

Forn,p € N,let G = {g;}~, be a set of input labels or stimuli and M = {mj}f:1
a set of output labels or responses for a multiclass classifier task embodied in
a human or artificial agent. Consider the joint event “presenting a stimulus g;
to a classifier and obtaining response m;,” (G = g;, M = m;) . A contingency
table or confusion matriz (CM) for the classifier C' € N"**P is a record of the
decisions of N repetitions of such an experiment®.

Confusion matrices are rich summaries of how the classifier performed in
a test set. This is usually transformed into an aggregate figure of merit, like
accuracy, or a visual depiction, like a multi-class ROC, thereby losing information
about the particular errors the classifier may commit.

We contend that some information about the underlying task can be obtained
from the numerical data in the confusion matrix via a special type of biclustering
scheme, a concept lattice, from Formal Concept Analysis (FCA) [1]. Furthermore,
concept lattices allow us both to observe the global behavior of classifiers and
to analyze their confusions in detail.

FCA, unfortunately, cannot deal in an automatic way with non-binary in-
cidences, but generalizations of it to cater for the notion of degree of incidence
have been developed [2,3,4,5,6].

In this paper, we use K-Formal Concept Analysis (kFCA) [5,7], which enables
the analysis of practical real-valued CM by embedding them into an idempotent
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1 'We consider here the general case where the labels used in the training speech
samples differ from those considered by the recognizer.
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semifield —actually a bounded lattice-ordered group [8]—, to try and prove
that a concept lattice can elicit a symbolic description of the features being used
in the classification process and how they are misused by the classifier.

2 Generalized Formal Concept Analysis of Confusion
Matrices

From count matrix to ¢p-confusion lattice. To illustrate IC-Formal Concept
Analysis of confusion matrices, consider that of Fig. 1(a). The first design choice
is to find an adequate domain to express the strength of confusions. From a count
matrix Ngps we may obtain an estimate of the mutual information distribution
for the events Cgys , like that of Fig. 1(b). A proper choice for the semiring in
KC-Formal Concept Analysis is Ryax + (tead “completed max-plus”). This is the
completed set of reals with the “max” operation used as addition and normal
addition as multiplication.
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Fig. 1: example analysis using kFCA: (a) count confusion matrix, obtained from
the Miller and Nicely experiments [9] for SNk = 0dB—only phonemes G = M =
{/m/,/p/,/t/,/k/,/[],/s/,/th/} have been retained as both stimuli (left) and re-
sponses (above); (b) its mutual information distribution; (¢) structural matrix and (d)
structural lattice for ¢ = 0.056585 .



For n,p € N, given two sets of stimuli G = {gz}f 1, and responses M =
{m;}s_,, and a (Rumax,+ )-valued matrix C' € R the triple (G, M, C)%

is called a (Ruax,+ ) -valued formal context, where C(i, j) = A reads as “stimulus
gi is confused with response m; to degree \” and dually “response g; is evoked
by stimulus m; in degree \”.

We may associated multi-valued sets of stlmuh A and responses B by n means
of a pair of functions (- )JCC#J : RZMX)JF — Rmdx 4 and C(p( ) Rimx7+ — Rm&x n
forming a Galois connection [1,7] as follows define p-concepts as pairs (A, B)
such that (A)CSO B — A= C (B). The Basic Theorem of K-Formal
Concept Analysis asserts that the set of formal p-concepts is a complete lattice
B?(G,M,C)g, ., (see [5,7] for details). The parameter ¢ € R is called the
threshold of existence and it describes a minimum degree of confusion required
for concepts to be considered members of the BY (G, M, C)g

max + ) Rmax,+

max, 4

Structural Confusion Lattices. The ¢-concept lattice B*(G, M,C)g N

has a huge number of concepts (infinite, in the typical case) and is hard to
visualize. Therefore, for each choice of ¢ deemed interesting, we introduce its
structural (confusion) lattice B(G, M, Iasa) , the (standard) confusion lattice of

the binary incidence, I g o depicting only those concepts above a fixed threshold
of existence . The following lattice exploration algorithm must be carried out
once for each choice of ¢ 2

1. Work out the concepts ”y(gl-)g , and ,u(mj)g ,, associated to singleton stimuli
and responses, respectively.
2. Build a binary incidence I JCC ., associated to those concepts by adequately

comparing them to create the binary context (G, M, JCrﬁsa) with the binary

incidence gZ<Ic S(,>mz — W(Qz)cw < N(mj);ga :

3. Use a standard tool for Formal Concept Analysis, called CONExP [11], to
build and visualize the structural concept lattice at o, B(G, M, Iasa) .

Structural confusion lattice interpretation. For a boolean confusion ma-
trix I—such as that of Fig. 1(c)— the triple (G, M, I) is called a formal con-
text, and assumed to encode all information pertaining to the phenomenon be-
ing analyzed. Pairs of a particular set of stimuli that are all confused with a
particular set of responses, and vice versa, are called formal concepts. For in-
stance, ¢; = ({/s/},{/s/,/th/}) is one such pairs for the context above, and
ca = ({/s/,/t/,/th/},{/th/}) another. The set of stimuli in a concept is called
the extent and the set of responses is the intent of the concept: {/s/} and
{/s/,/th/}, are the extent and intent, respectively of ¢;, meaning stimulus /s/
is confused with responses /s/ and /th/. To distinguish between stimuli and
responses, boldface characters will be used for the former throughout the text.

Concepts are partially ordered by inclusion of extents, or, equivalently, re-
verse inclusion of intents: if (A;, By) < (A2,Bs2) & Ay C Ay & By O By we

2 An on-line demonstration of this can be accessed in [10].



say that the first concept is more specific (less general) than the second. For
instance, ¢; is more specific than ¢y . The Basic Theorem of Formal Concept
Analysis asserts that the set of formal concepts of a formal context, as related by
this order relation, is a complete lattice called the concept lattice B(G, M, I) .

In the Hasse diagram of a confusion lattice, stimulus labels appear in white
bozes just below the corresponding concept and response labels usually appear in
gray boxes just above. To diminish visual clutter, instead of completely labeling
each node with all labels of either sort we put the label of each response only
in the highest—most abstract—concept it appears, and the label of each stimulus
only in the lowest—most specific—concept it appears. This is the reduced labeling
shown in Fig. 1(d).

In this labeling scheme, concepts capture the confusions between more phones
than those that actually appear attached to the concept. To recover the confusion
extent, the set of stimuli being confused at a particular concept, we take the union
of all stimulus labels found from the node downwards in the lattice. Similarly, to
build the confusion intent, we take the union of all response labels found from
the node upwards in the lattice . In the example, if we go from ¢; downwards
in the lattice collecting stimulus labels (below the nodes) we obtain its extent
{/s/}, and if we go upwards we find the labels in its intent, /s/ (above ¢; itself)
and /th/ (above cg).

There are two types of complementary, domain-specific information that can
be gleaned from a lattice: specific concept information and overall lattice infor-
mation. As to the first, the most interesting concepts are the join-irreducible
concepts (bottom half-filled in black in Fig. 1(d)), and meet-irreducible concepts
(top half-filled in gray, blue online). Call the rest of the concepts in the ex-
ample lattice ¢y = ({/p/7 /t/v /k/}v {/p/7 /t/7 /k/})7 Cm = ({/m/}v {/m/})7
and cpp, = ({/£/,/th/},{/f/,/th/}) . The set of join-irreducibles is J =
{cptks Cfih, €1, cm }, and the set of meet-irreducibles is M = {¢cpik, Cfin, €1, C2, Cm }-
In confusion lattices, join-irreducibles, always annotated with a stimulus label,
are the concepts to peruse in order to know what responses each individual
stimulus invokes. And likewise, meet irreducibles, annotated with response la-
bels, show what set of stimuli evokes a particular response.

Regarding overall information about the matrix, consider the three separate
sublattices of Fig. 1(d) including, the first, concepts top, bottom and ¢, to
the left; the second, concepts top, bottom and ¢,,, to the right; and the third,
concepts top, bottom, ci, ¢z and cyp,, at the center. Concepts in different sub-
lattices are incomparable except for the top and bottom. We will say that such
sublattices are adjoined factor sublattices of the confusion lattice. Notice that
stimuli and responses that lie in adjoined factor sublattices are never confused,
hence the presence of some adjoined sublattices in the confusion lattice is essen-
tially the lattice-theoretic manifestation of as many different virtual channels in
the classifier system. By this we mean that the classifier succeeds in conveying
definite information from input to output without error. In the example, the

channels for {/m/}, {/f/,/s/,/th/} and {/p/, /t/, /k/} seem evident.



3 The elicitation of symbolic knowledge from phonetic
confusion matrices

Confusion matrices became a key tool for the analysis of human speech percep-
tion since the Miller & Nicely experiments [9]. After a thorough analysis their
major conclusion was that phone recognition is grounded on hierarchic categor-
ical discrimination, that is, English consonant sounds form groups identified in
terms of hierarchical clusters of articulatory features. They introduced the notion
of wirtual articulatory communication channels, according to such clusterings,
and posited that the channels were characterized by five distinctive acoustic-
articulatory features, namely, voicing, nasality, affrication, duration and place.
In the following we will try to reproduce these results using K-Formal Concept
Analysis of perceptual confusion matrices.

To assess the complexity of the structural confusion lattices, we have worked
out the concept counts defined at different thresholds . The concept count
represent the number of nodes present in the corresponding structural lattice,
and provides a rough measure of the complexity of the resulting representation.
Small values of the threshold ¢ bring into the picture non-systematic, difficult
to explain, confusions evident in the analysis of structural lattices with a high
number of nodes. On the contrary, if a larger value of ¢ is chosen, the number of
concepts will be reduced offering a much simpler structural lattice showing the
most prominent confusions.

The different plots of Fig. 2 represent the evolution of the number of concepts
for several Signal to Noise Ratios (SNR) and a full 200 — 6 500Hz band for the
Miller and Nicely experiments. We can clearly notice how the maximum number
of concepts attained by each plot is inversely related to the SNR of the emitted
syllables. Therefore, the confusion lattice analysis is capturing the complexity of
the CM that corresponds to each SNR: as the speech signal quality gets better
the errors become more systematic or structured and therefore the number of
concepts decreases.

The evolution of the number of concepts suggests a method for describing
the information in structural lattices:

1. Begin by observing the most salient properties of the system, that is, those
lattices obtained with higher values of the threshold ¢.

2. Subsequently, try to bring more detail into the picture by sweeping from
higher to lower values of ¢ (from right to left in figures 2).

We thus obtain a sequence of structural lattices starting from the least complex—
with the least number of concepts—and gradually increasing the complexity as
new concepts appear.

Figure 3 is a typical structural lattice for the Miller & Nicely experiments at
0dB and a particular ¢ where six adjoined factor sublattices can be observed.
To the left the voiced phonemes with /m/ and /n/, the nasals, even represented
in two separate sublattices. To the right, three sublattices representing unvoiced
phonemes: the (oral) stops /p-t-k/, fricative /sh/ and the rest of fricatives.
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Fig. 2: (color online) number of concepts vs. ¢ for HSR confusion matrices (data from
[9]). The maximum number of concepts attained by each plot is inversely related to
the SNR of the emitted syllables.

Fig. 3: phonetic confusion lattice at ¢ = 0.11716 and SNR = 0dB (data from [9]).



Hence our hypothesis is that adjoined factor sublattices in a structural con-
fusion lattice reflect virtual feature transmission channels. Since this has to be
contrasted to the Miller and Nicely findings, a direct method to elicit what
phonetic knowledge the sublattices reflect would be to show the stimuli and
responses in each lattice. This would demand, afterwards, the concourse of a
phonetic expert to elicit the features.

However, a clustering of phonemes in terms of their voicing, manner and
place of articulation can also be cast into an Formal Concept Analysis concept
lattice as shown at the top of Fig. 4(a)—showing two phonemes for each feature
that correspond to unwvoiced (on the left) and voiced sounds (on the right). We
may use this knowledge to label the structural lattices automatically by selecting
the feature label adequate for each phonemic concept extent.

D
: .,

Fig. 4: phonemes vs. articulatory features concept lattices: (a) canonical clustering with
unvoiced sound concepts on the left and voiced ones on the right; (b) clustering elicited
from the confusion lattice of Fig. 3; (c) id. including the place feature.

The lattices at the bottom of figure 4 demonstrate which part of the clustering
can be actually elicited from the confusion matrix in Fig. 3. Voicing, manner
of articulation—stop, nasal, fricative—can be obtained almost without error
as shown in Fig. 4(b), although clear mismatches between the canonical and
empirically induced representations can be observed: /b/ and /g/ are perceived
as fricative, /z/ as stop. But place of articulation is hopeless as Fig. 4(c) shows.
In fact, labiodental and velar can not be defined at all. This agrees in all with



the Miller & Nicely conclusions, except for result in place of articulation, which
has often been disputed.

4 Conclusions

We have provided evidence that (Emax7+)—Formal Concept Analysis of confu-
sion data for a multiple-classification task can identify features present in the
classification act. Since our generalization considers non-binary matrices in the
analysis, it is ideally suited to the analysis of count confusion matrices.

After a preprocessing stage which amounts to considering the confusion ma-
trix as a joint-distribution of input stimuli and output responses, we are able to
pinpoint adjoined sublattices in the concept lattice which we take as evidence
that some definite feature is being transmitted.

For assessment purposes, we also elicited these features using conventional
articulatory acoustic knowledge. Our results agree with expert-drawn conclu-
sions in all but the most contested ones, what we take to reflect the robustness
of the elicitation process.
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