11,735 research outputs found

    Conductivity anisotropy in the antiferromagnetic state of iron pnictides

    Full text link
    Recent experiments on iron pnictides have uncovered a large in-plane resistivity anisotropy with a surprising result: the system conducts better in the antiferromagnetic x direction than in the ferromagnetic y direction. We address this problem by calculating the ratio of the Drude weight along the x and y directions, Dx/Dy, for the mean-field Q=(\pi,0) magnetic phase diagram of a five-band model for the undoped pnictides. We find that Dx/Dy ranges between 0.3 < D_x/D_y < 1.4 for different interaction parameters. Large values of orbital ordering favor an anisotropy opposite to the one found experimentally. On the other hand D_x/D_y is strongly dependent on the topology and morfology of the reconstructed Fermi surface. Our results points against orbital ordering as the origin of the observed conductivity anisotropy, which may be ascribed to the anisotropy of the Fermi velocity.Comment: 4 pages, 3 pdf figures. Fig 1(b) changed, one equation corrected, minor changes in the text, references update

    Tight binding model for iron pnictides

    Full text link
    We propose a five-band tight-binding model for the Fe-As layers of iron pnictides with the hopping amplitudes calculated within the Slater-Koster framework. The band structure found in DFT, including the orbital content of the bands, is well reproduced using only four fitting parameters to determine all the hopping amplitudes. The model allows to study the changes in the electronic structure caused by a modification of the angle α\alpha formed by the Fe-As bonds and the Fe-plane and recovers the phenomenology previously discussed in the literature. We also find that changes in α\alpha modify the shape and orbital content of the Fermi surface sheets.Comment: 12 pages, 6 eps figures. Figs 1 and 2 modified, minor changes in the text. A few references adde

    Optical conductivity and Raman scattering of iron superconductors

    Get PDF
    We discuss how to analyze the optical conductivity and Raman spectra of multi-orbital systems using the velocity and the Raman vertices in a similar way Raman vertices were used to disentangle nodal and antinodal regions in cuprates. We apply this method to iron superconductors in the magnetic and non-magnetic states, studied at the mean field level. We find that the anisotropy in the optical conductivity at low frequencies reflects the difference between the magnetic gaps at the X and Y electron pockets. Both gaps are sampled by Raman spectroscopy. We also show that the Drude weight anisotropy in the magnetic state is sensitive to small changes in the lattice structure.Comment: 14 pages, 10 figures, as accepted in Phys. Rev. B, explanations/discussion added in Secs. II, III and V

    Feedback linearization control for a distributed solar collector field

    Get PDF
    This article describes the application of a feedback linearization technique for control of a distributed solar collector field using the energy from solar radiation to heat a fluid. The control target is to track an outlet temperature reference by manipulating the fluid flow rate through the solar field, while attenuating the effect of disturbances (mainly radiation and inlet temperature). The proposed control scheme is very easy to implement, as it uses a numerical approximation of the transport delay and a modification of the classical control scheme to improve startup in such a way that results compared with other control structures under similar conditions are improved while preserving short commissioning times. Experiments in the real plant are also described, demonstrating how operation can be started up efficiently.Ministerio de Ciencia y Tecnología DPI2004-07444-C04-04Ministerio de Ciencia y Tecnología DPI2005-0286

    A Chern-Simons Pandemic

    Full text link
    In this paper we study the consistency of generalized global symmetries in theories of quantum gravity, in particular string theory. Such global symmetries arise in theories with (p+1)(p+1)-form gauge fields, and for spacetime dimension dp+3d\leq p+3 there are obstructions to their breaking even by quantum effects of charged objects. In 4d theories with a 2-form gauge field (or with an axion scalar), these fields endow Schwarzschild black holes with quantum hair, a global charge leading to usual trouble with remnants. We describe precise mechanisms, and examples from string compactifications and holographic pairs, in which these problems are evaded by either gauging or breaking the global symmetry, via (suitable versions of) Stuckelberg or Kaloper-Sorbo couplings. We argue that even in the absence of such couplings, the generic solution in string theory is the breaking of the global symmetries by cubic Chern-Simons terms involving different antisymmetric tensor fields. We conjecture that any theory with (standard or higher-degree antisymmetric tensor) gauge fields is in the Swampland unless its effective action includes such Chern-Simons terms. This conjecture implies that many familiar theories, like QED (even including the charged particles required by the Weak Gravity Conjecture) or N=8\mathcal{N}=8 supergravity in four dimensions, are inconsistent in quantum gravity unless they are completed by these Chern-Simons terms.Comment: 60 pages, 2 figure

    Closing the gap between business undergraduate education and the organisational environment: A Chilean case study applying experiential learning theory

    Get PDF
    In response to the continuous changes in Latin American higher education and the increasing demands for better prepared professionals, the Learning Connected to the Organisational Environment method was introduced in the course of Marketing at one public University in Chile. This was aimed as an integrated approach to education, providing pedagogical and social value by connecting organisations and real challenges with the learning objectives. This paper describes its design, implementation and initial impact on students’ learning process. Results on the impact of the LCOE method show that students valued learning with this new initiative (n = 158) and showed higher performance and improved quality of their written reports, along with higher evaluations of the teaching staff compared to students in the same course learning with traditional methods (n = 158). Discussion is centred on the value of this initiative and on suggestions for transference and future research

    Thermal Renormalons in Scalar Field Theory

    Get PDF
    In the frame of the scalar theory gϕ4g \phi ^{4}, we explore the occurrence of thermal renormalons, i. e. temperature dependent singularities in the Borel plane. The discussion of a particular renormalon type diagram at finite temperature, using Thermofield Dynamics, allows us to establish that these singularities actually get a temperature dependence. This dependence appears in the residues of the poles, remaining their positions unchanged with temperature.Comment: 12 pages, 3 figures, uses feynMF. Minor correction
    corecore