PHYSICAL REVIEW B 87, 075136 (2013)

Optical conductivity and Raman scattering of iron superconductors
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We discuss how to analyze the optical conductivity and Raman spectra of multiorbital systems using the
velocity and the Raman vertices in a similar way Raman vertices were used to disentangle nodal and antinodal
regions in cuprates. We apply this method to iron superconductors in the magnetic and nonmagnetic states,

studied at the mean-field level. We find that the anisotropy in the optical conductivity at low frequencies reflects
the difference between the magnetic gaps at the X and Y electron pockets. Both gaps are sampled by Raman
spectroscopy. We also show that the Drude weight anisotropy in the magnetic state is sensitive to small changes

in the lattice structure.
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I. INTRODUCTION

Raman and optical conductivity are very useful techniques
to analyze the electronic properties of strongly correlated
electron systems.! Optical conductivity experiments have
provided very valuable information on the reorganization of
the spectral weight and the opening of gaps in many materials.’
In cuprates, the use of different polarizations in Raman
scattering has allowed the disentanglement of the different
physics of the nodal and the antinodal electronic states.>*

The multiband character of iron superconductors com-
plicates the analysis of their Raman®® and optical
conductivity®=* spectra. The five iron 3d orbitals are required
for a minimal model to describe these materials. Different
interband transitions involve similar energies and contribute
to the spectra in the same frequency range. Moreover, they
start at very small energies,”* making it difficult to separate
their contribution from the Drude peak in optical conductivity
experiments. 32

The difficulties in the interpretation of the spectra are more
pronounced in the magnetic state. When entering the magnetic
state, the optical conductivity is suppressed at low frequen-
cies and new peaks appear.'®!12-1416.1821 The conductivities
along the antiferromagnetic o,,(w) and ferromagnetic oy, (w)
directions show different intensity and peak frequencies.'®?!
The modification of the spectrum and the anisotropy in the
magnetic state are visible up to 17000 cm™' (Ref. 21). The
in-plane resistivity in the magnetic state is also anisotropic.
The origin of these anisotropies is not clear yet.'021:25-37
The Raman spectrum in the magnetic state shows signatures
and peaks at energies similar to those found in optical
conductivity and it has been interpreted in terms of two kinds
of electronic transitions: a high-energy transition between
folded anticrossed spin density wave bands and a lower-energy
transition which involves a folded and a nonfolded band’ (see
Fig. 1). It would be desirable to address the orbital degree of
freedom in the interpretation of the optical conductivity and
Raman spectroscopies.

In this paper, we discuss how to analyze the optical con-
ductivity and Raman spectrum of multiorbital systems using
the velocity and the Raman vertices. These vertices depend
on the symmetry of the orbitals involved in the interband
transitions but do not simply follow the symmetry rules for
atomic transitions. They change in k space (see Fig. 2),
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reflecting the underlying lattice and can be used to obtain
information of the orbitals and the regions of the Brillouin
zone (BZ) which contribute to the spectrum in a similar
way Raman vertices were used to disentangle the nodal and
antinodal regions in cuprates. We apply this method to iron
superconductors in the magnetic and nonmagnetic states. The
information obtained from optical conductivity and Raman
spectroscopy are complementary and allow the exploration of
all the BZ.

We find that for magnetic moments comparable to the
experimental ones the different frequencies at which o, and
oy peak reflect the magnetic gaps at Y and X electron pockets,
respectively (in the 1-Fe unit cell). For some reconstructed
band structures, any of these gaps can open below the Fermi
level. In this case, the interband transition is not allowed,
affecting the shape of the spectrum. We also show that the
Drude weight anisotropy is sensitive to small changes in the
lattice structure.

The paper is organized as follows: In Sec. II, we give
the expressions for the optical conductivity and the Raman
scattering in multiorbital systems and introduce the respective
vertices. Section III focuses on the Raman and velocity vertices
in the case of iron superconductors. In Sec. IV, we use
the vertices to discuss the optical conductivity and Raman
spectra of iron superconductors in the mean-field magnetic
and nonmagnetic states. The fingerprints in the spectra of
the crossover to the orbital differentiation regime which
appear in our mean-field calculations are analyzed. Section V
is dedicated to the Drude weight in-plane anisotropy. We
end with a discussion of our results and a comparison to
experiments in Sec. V1.

II. MODEL AND METHOD

We consider a multiorbital system with a tight-binding
Hamiltonian

Ho= ) i (ot THe) = D €u®ifocn- (1)

ijouv ko v

i and j label the lattice sites connected by the hopping terms,
w and v the orbitals, and o the spin. €,,,(k) is the tight binding
in Kk space.

If interactions are local, as considered through all the paper,
the coupling between the electrons and the electromagnetic
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FIG. 1. (Color online) Illustrations of the types of transitions en-
countered: (a) standard interband transition; (b) transitions involving

a nonfolded and a folded band; (c) transitions involving two folded
anticrossing bands.

field can be introduced via the Peierls substitution'**" in

the hopping 7" — "¢’ FUAwdr T % 1,9 links the
neighbors i and j connected by hopping. Here and in the
rest of the paper, natural units are used and we take e =
¢ =h = 1. Assuming that the vector potential A(r) varies
more slowly than the lattice length scale, one can approximate

fim A(r) -dF ~ A(i + 7/2) - 1. For small fields we can expand

the exponential to second order /Al ~ 1 +iA -] — %(A e
Under these approximations and introducing Fourier compo-
nents, the Hamiltonian in the presence of an electromagnetic

field is
HA=0)- XX joat,
@ q
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Jq 1s the paramagnetic current and Ty A gives rise to the
diamagnetic current and enters in the nonresonant Raman
response. V is the volume, A% the Fourier component of
the electromagnetic field, and e“ the photon polarization with
energy wq while % is its complex conjugate.

A. Optical conductivity

Assuming a single component of the vector potential Ag
and expanding to linear order, the longitudinal current is
given by

o 8H(A) -a oo o
Je = 2, Oy T A, )
q

The contribution of the paramagnetic current to the ex-
pected value of the current is given by the Kubo formula. At
zero temperature

1

— | ¢ @ollig .55 O]io) (6)
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where |¢p) is the ground state. We are interested in the
response to a homogeneous q = 0 electric field Ay_q(w) =
Egzo(w) /(iw — §) with § a small parameter, and in particular
in 0/, (w), the real part of the optical conductivity, oy (w) =

o, (w)+za” (w) defined as Ji_o = 0ua(@)Eq_o(®). After
some algebraf6 40
| (ol gt o|¢>m>|
/ D,8 q—
04 (@) = Dod(@) + = Z —
m;é(]
x 8[w — (En — Ep)], 7
with the Drude weight given by
Fa [{bolie_olm) |
= 7 {gol — T2 lgo) — Z e ®
m#O m 0

Ey and E,, are the energies of the ground state |¢y) and the
excited states |¢,,), respectively. The first and second terms
in Eq. (8) originate, respectively, in the diamagnetic and
paramagnetic contributions. Equation (7) fulfills the optical
sum rule*’

/0 ou (@) = 7 (o] — T2 o). ©)

which becomes the kinetic energy when hopping is restricted
to first-nearest neighbors.

Within the mean-field level used in the following,*' the
Hamiltonian becomes biquadratic in fermionic operators.
Therefore, the eigenstates |¢,) can be given in terms of
single-particle bands, and Egs. (7) and (8) can be written as

0L0(@) = Dod(@) + — 3 a0
o V i ew(k) — (k)

x Olew (K)10[—€, (k)81 — €, (K) + €,(K)],  (10)
o == Y 12 (k)O(—€, (K))
kn

BRI

V e en®) — k)

where €, (k) are the band energies, ®[€,(k)] the Heaviside step
function, and

Oley (]O[—€,(K)], (11

i 826 V(k) *
@ (k) = ;—a’zg @, (K)au (K) (12)
o e ek
Jin k) = Z S (0 (). (13)

with a,m(k) the rotatlon matrlx between the orbital and the
band basis ckw =Y, a,&d)

n “un

B. Raman response

The electronic Raman scattering measures the total cross
section of the inelastic scattering of electrons. It is proportional
to the transition rate of scattering an incident (q; ,w; ,&;) photon
into an outgoing (q;,wy, €, ) state, where qi.s» @i s and €; ; label
the momentum, frequency, and polarization of the incident
and scattered photons. The transition rate can be obtained
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FIG. 2. (Color online) Leading k dependence of the velocity (optical conductivity) and Raman squared vertices |v;,, 12, (V7 2, |J/fvlg 2, and

|yf§g |? defined in Eqs. (24)—(26) for iron superconductors for each pair of orbitals involved in an interband transition in the unfolded 1-Fe
Brillouin zone corresponding to the tight-binding model in Ref. 38. x and y directions point along the Fe bonds. B, and B,, are defined in this
Brillouin zone and axes. The same assignment is used in the nonmagnetic and the magnetic states. In the case of intraorbital transitions, B,
probe the electron pockets. Note that a different convention has been used in some Raman articles which define the polarizations according
to the tetragonal FeAs Brillouin zone. Darker regions in each figure correspond to larger values of each squared vertex. Combination of
optical conductivity and Raman scattering spectroscopy allow us to probe selectively interorbital transitions through the whole Brillouin zone.
Intraorbital By, squared vertex depends on k as (A cos k, — B cos k,)* with the ratio A/ B dependent on the orbital. A = B valid for xy, x> — 2,
and 3z> — r? has been considered in the figure. The k dependence changes slightly for zx, yz, but it is maximal in approximately the same
regions of the Brillouin zone. The pairs (&, =) refer to the product of the parities with respect to x and y reflections for each pair of orbitals (see
Sec. I1I for an illustrative example). The vertices for the (+,4) 3z2 — r? <> x> — y? transition in B, symmetry and for the (—,—) transitions
in B, symmetry vanish. Note that the hoppings between xy and x> — y? to nearest- and next-nearest-neighbors are zero, so the corresponding
vertices cancel within the model considered here. A finite small contribution could arise if hoppings to farther away neighbors were considered.
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following the Fermi golden rule®*?

1
= 2 ¢ PEUFIMIDPS(Er — Ef — ), (14)
F

with Z the partition function and 8 = 1/KgT, being Kp
the Boltzmann factor and 7 the temperature. E£; and Ef are
the initial and final energies of the many-electron system,
o = w; — w; is the transferred energy, and M is the effective
light scattering between the initial and final states. Neglecting

resonant processes*?
E e‘"e’S F|—

with q = q; — q;. For the energies involved in the Raman
scattering, q < Kr. In the following, we take q = 0.

Instead of using T;’ f o and arbitrary o and B polarizations,
it is convenient to decompose this matrix element into
basis functions of the irreducible point group of the lattice
according to the polarization of the incident and scattered light
A = Big, Byg, eic., and use an effective polarization-dependent
density matrix

(FIM|I) = Unglis (15)

=Y ¥ K, ko (16)

k,opv

In particular, for By, and B,, polarizations,

Bl aze/w(k) a2euv(k)
f(k — s 17
b = S - o (a7
2
32 6;w(k)
“(k . 18
v = Sk, (1%)

At zero temperature, the Raman spectrum for A polarization
becomes

Si(@) o Y 1l o7 190)I* 8(En — Eg — ).

If, as in the previous section, the eigenstates can be expressed
in terms of single-particle bands with energies €,(k):

$1@) = > |7, )| Ol—€, k)10, (K)]
x 8w (k) — €,(k) — ],
Van ) =Dy, (K)ar,, (K (k). (19)
Y

S (w) is related® to x, (w), the imaginary part of the effective
polarization density correlation function y; (),

@) =i / dt P00 0)). (0)
0
discussed below by

Si(—w)]. 21

At zero temperature and zero scattering rate, S (w) Xi’ (w).
In our calculations, we broaden the delta functions with a small
scattering rate I' = 20 meV. With such I', the proportionality
relation between X;(a)) and S;(w = 0) only fails at w ~ 0.
XZ (w = 0) = 0 while S, (w = 0) acquires a small finite value.
However, the qualitative features of the spectra are not affected.

X (@) = 7 [Si(w) —
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C. Raman and velocity vertices

According to Egs. (10), (13), and (19), the optical con-
ductivity and Raman spectrum are given in terms of the
quantities | j* ,(k)|*> and |y;* ,(k)|. Once the square is expanded
in orbitals, the optical conductivity involves terms

Z 86,11_1)(]() ae:’v’ (k)

ok o i (B)an Kay, (Kay,, (k).

mpvy

Similar terms appear in the calculation of the Raman spectrum.
The transition probability between n and n’ has a very complex
k structure which depends on the interactions through the a,,,
operators, making very difficult the analysis of the spectra.

In order to get a simple picture of the transitions, one can
neglect the crossed terms with i # ' or v # V" and focus on
the terms with 4 = @’ and v = v’. Within this approximation,
the probabilities for an interband transition between bands n
and »’ in optical conductivity |j %, |> and Raman spectroscopy
ly:.|% in Eqs. (10) and (19) are

e ~ 3 [, 0 laum®) Plaw W2, (22)

Hv
3 @ e ®P. (23)

Iy

’Vr?n’(k)‘z ~

Here, |a,,(k)|* and |a,,(k)|> give the spectral weight of
orbitals p and v in the bands n and »n’ involved in the transition.
For each transition between bands n and n’, this approximation
only keeps the weights corresponding to p orbital density on
band n |a,m| to v orbital density on band n|a,, |?, summing to
all pairs of orbitals. The velocity [v%, (k)|* and Raman |y}, (K)|*
squared vertices are given by

7Y

N de,mk) |
0%, () = (24)
2enk) 9% (K)|?
B k v _ Hnv ; 25
[y’ )| ‘ k2 ok? 25)
2
22 (k 26
|yt ()| = ‘akxaky (26)

where o = x,y and we have focused on the A = By,, By,
Raman polarizations.

Aside from the corresponding spectral weights |a,,|*
and |am|2, the probabilities of a transition from the orbital
component 4 in band n to the orbital component v in band »’ in
a Raman or optical conductivity experiment are, respectively,
weighted by the squared vertices |y, (k)|* and |[v%, (k)|*. These
vertices depend on k through the underlying lattice via €, (k).
While the vertices |vfjv(k)|2 and |V;1\v(k)|2 depend on the
symmetry of the orbitals, they can not be deduced from simple
arguments involving atomic optical transitions, valid only at T".

Therefore, knowledge of the tight-binding dispersion
€,(Kk) in the orbital basis helps to identify which transitions
contribute to the optical conductivity and Raman spectrum.
The band structure of the interacting Hamiltonian in the normal
or ordered state is also required for the interpretation of the
spectrum via the orbital spectral weight |a,,|> and the band
energies €, (k).
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FIG. 3. (Color online) Upper figures: Energy bands in the nonmagnetic (a) and (7r,0) antiferromagnetic state (c) for U = Jy = 0 and

2

U =1.6eV and Jy = 0.25U, respectively. Linewidths and colors reflect the orbital content yz = red, zx = green, xy = blue, 3z> — 1> =
orange, and x> — y? =black. Note that not all the orbital content is visible due to overlapping curves. Lower figures: Zoom of the band structures
in the upper figures in the energy region close to the Fermi level showing the optical and Raman transitions at low energy discussed in the text.

We emphasize that the approximation in Eqgs. (22)-(26) is
used only in the interpretation of the spectra that is calculated
using the full expressions in Egs. (10) and (19).

III. VERTICES IN IRON SUPERCONDUCTORS

Previous expressions are valid for a multiorbital system
with local interactions. In the rest of the paper, we focus on
the case of iron superconductors. Unlike otherwise indicated,
we consider the five-orbital tight-binding model introduced by
the authors in Ref. 38, where the five orbitals refer to the 3d
iron orbitals yz, zx, xy, 3z2 — r2, x> — y2. The model and
the orbital directions are defined in the 1-Fe unit cell, with
x and y along the Fe-Fe bonds. Hopping among the orbitals
is restricted to first and second neighbors and includes both
indirect hopping mediated by As as well as direct hopping
between Fe orbitals. Indirect hopping depends on the angle
ape.as formed by the Fe-As bond and the Fe plane. The
tight-binding model used allows the modification of this angle.
Except otherwise indicated, the results are given for a regular
tetrahedron with apeas = 35.3° with a nonmagnetic band
structure as plotted in Fig. 3(a). Similar results are expected for
other five-orbital models discussed in the literature, whenever
defined using the same orbitals and unit cell.

The five orbitals result in 15 different squared vertices
(5 intraorbital and 10 interorbital) for each of the spectro-
scopies discussed in this paper: oy, oy, xj, . and xp, .
Keeping only the leading k dependence, one can group the
squared vertices according to the symmetry of the product
of the orbital wave functions involved in the transition with
respect to x and y reflections. For example, yz orbital is even
(odd) with respect to x (y) while xy is odd with respect to
both x and y. Therefore, the product yz - xy is odd (even)
with respect to x (y), summarized in (—,+). The pairs yz,xy
and zx,3z? — r? have the same product parity (—,+). For both

terms, the derivative involved in the vertex of o is d¢,, , / 0k, =
2i cos ky(tj,v — 2f,,, cosk,) with 7 and 7 the hoppings for the
corresponding orbitals to nearest- and next-nearest neighbors,
respectively.*® The leading k dependence of the squared vertex
for o, is cos? k, for the orbital pairs with product parity (—, ).

The leading k dependence of the vertices is shown in Fig. 2,
where the darkest color emphasizes the region of the BZ with
largest square vertex and the product symmetry is given in
parentheses (£,£) with + and — referring, respectively, to
even and odd.

In Fig. 2, the vertices for the (—,—) transitions in By,
symmetry vanish. The (4,+) symmetry group includes both
the transition 3z> — r?> <> x> — y? and the intraorbital ones.
The optical conductivity velocity vertices of these transitions
have the same leading k dependence, but there are some
differences in the Raman case. While the squared B, vertex
vanishes for the 372 — r2 < x2 — y2 transition, it depends as
(sin k, sin ky)2 for intraorbital transitions. The B, squared
vertex goes like (A cosk, — B cos ky)2 with A and B orbital
dependent. A = —B for the 3z% — r? <> x* — y? transition,
while A = B for intraorbital transitions involving xy, x2— yz,
or 3z2 —r2. This results in a different k dependence of
the squared vertices with maximum and minimum values in
different regions in k space. For zx and yz orbitals, A # B but
the k dependence is similar to that shown for A = B.

The x? — y? intraorbital Raman squared vertices depend on
k as (cosk, — cos ky)2 for By, and (sin k, sin ky)2 for By,. This
dependence was widely used in the analysis of the cuprates
Raman spectrum and allowed to separate the physics of the
antinodal region sampled by B, from that of the nodal region
measured by Bo,. In a similar way as done in the cuprates
for the x2 — y2 intraorbital transitions, the contributions to the
spectrum of a transition between two bands weighted by two
given orbitals will be larger when the corresponding vertex
is large in the region of k space which satisfies the energy
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conservation and this can be used to analyze the experimental
and calculated spectrum. The region of the BZ weighted for
transitions between two orbitals is different for the optical
conductivity and Raman vertices, being possible to cover
practically all the BZ for every transition by studying o7,,
0}y X5, and x, . Note that due to the multiorbital character,
Big (Byg) can sample different regions of the BZ besides the
antinodal (nodal) region.

IV. OPTICAL CONDUCTIVITY AND RAMAN SPECTRUM
OF IRON SUPERCONDUCTORS

A. Phase diagram and band reconstruction

To discuss the spectrum of iron superconductors in the
magnetic and nonmagnetic states, we consider a five-orbital
interacting Hamiltonian with local interactions. Assuming
rotational invariance, the interactions can be written in
terms of two parameters: the intraorbital interaction U and
the Hund’s coupling Jy (see Ref. 41 for details). Except
otherwise indicated, we assume electron filling n = 6, as in
undoped materials, and use our tight-binding model in Ref. 38
with squared vertices as given in the previous section. The
Hamiltonian is treated at the mean-field level.

The mean-field (;r,0) magnetic phase diagram as a func-
tion of the interactions U and Jy/U has been discussed
previously*** and is reproduced in Fig. 4 for clarity (see also
Refs. 45 and 46). The white area is the nonmagnetic state and
the red area corresponds to a low-moment state with antipar-
allel orbital moments violating Hund’s rule.*' The blue area
corresponds to a magnetic state with parallel orbital moments.
In this phase, there is a crossover from an itinerant to a strong
orbital differentiation regime represented in Fig. 4 by a white
dashed line. In the strong orbital differentiation regime, xy and

0.25 STRONG ORBITAL
I DIFFERENTIATION
0.2
’Qm 0.15
—

0.1

0.05

U (eV)

FIG. 4. (Color online) Main figure: (7,0) magnetic phase of the
undoped (6 electrons in 5d orbitals) system as a function of the
interactions U and Ji /U. The white area is the nonmagnetic region.
The blue and red areas are magnetic with a high-moment (parallel
orbital moments) and a low-moment (antiparallel orbital moments)
state, respectively, studied in Ref. 41. The dashed line separates the
itinerant and the strongly orbital differentiated magnetic regions (see
text and Ref. 44 for discussion). Inset: Doping dependence of Uy,
(U*), the interactions at which antiferromagnetism (strong orbital
differentiation) appear for Jy; = 0.25U, reproduced from Ref. 44.
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yz are half-filled gapped states while zx, 3z> — r2, and x> — y?
are itinerant with a finite density of states at the Fermi level.**
With hole doping, the system becomes more
correlated***"=0 as the average orbital filling approaches
half-filling. As shown in the inset of Fig. 4, the interaction
U* at which the system enters into the orbital differentiated
regime decreases with hole doping, while Uy, the interaction
at which antiferromagnetism appears, is nonmonotonous.*

Figure 3(c) shows the reconstructed bands in the (,0)
magnetic itinerant regime for U = 1.6 eV and Jy = 0.25U
corresponding to a magnetic moment m = 0.91u . The band
reconstruction involves band foldings not only at the Fermi
surface, but also far from it. Gaps with different values open
at different points in the Brillouin zone in the bands below, at,
and above the Fermi level. Breaking of the zx — yz degeneracy
is observed. Along I' — X, new bands cross the Fermi level
forming V-shaped pockets referred to in the literature as Dirac
pockets.

When moving towards the orbital differentiated phase with
increasing interactions or decreasing doping, the magnetic
moment increases and the band reconstruction becomes more
complex. Bands become flatter and shift away from the Fermi
level, being this effect more accused for the yz and xy orbitals.
Spectral weight of these two orbitals shifts partially to higher
energies above the Fermi level as these orbitals become half-
filled. As shown in Fig. 5(a) for U = 1.6 eV and Jy = 0.25U,
in the itinerant regime the yz band at I" slightly above the Fermi
level (red) lies below a band with dominant x> — y? orbital
content (black). On the contrary, for U = 1.8 eV, Fig. 5(b), in
the orbital differentiation regime the order of these two bands
is reversed, driving yz to half-filling. This feature seems to be

energy (eV)
(=)
energy (eV)

iy
o
-1+

'
—_
T

w’" y P
LA

Ty r X Y r X

/
Zﬂnuullw i ‘ "Ilmmﬂ

FIG. 5. (Color online) Band structure in the Y-I'-X directions
in the antiferromagnetic state corresponding to Jy = 0.25U with
(@) U =1.6 eV and (b) U = 1.8 eV in the itinerant and orbital
differentiated regions, respectively. Linewidths and colors reflect the
orbital content yz = red, zx = green, xy = blue, 37> — r?> = orange,
and x> — y? =black. The circles highlight the shift of the yz orbital to
higher energies, driving yz to a half-filled gapped state, and x> — y?
to lower energies. The arrows mark the involved transitions. See text
for discussion.
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FIG. 6. (Color online) Optical conductivity for two different
tight-binding models. A logarithmic scale for w is used to highlight
the low-energy region. A scattering rate of 20 meV is used. (a) Optical
conductivity for our tight-binding model (Ref. 38). The dotted line
corresponds to the nonmagnetic state for U = Jy = 0 eV. Due to
the tetragonal symmetry o, (0) = rry’y(w). In solid lines, the optical
conductivity in the antiferromagnetic x (black) and ferromagnetic y
(red) directions corresponding to U = 1.6 eV and Jy = 0.25U in the
(,0) antiferrromagnetic state. The tetragonal symmetry is broken and
0, (@) # o} (w). There is a strong suppression of the Drude weight
with magnetism: o], (0 =0, U =0)=12.0876, o, (w0 =0,
U = 1.6 eV) = 2.2855, and o, (w=0,U=1.6eV)=1.9874. In-
set: Optical conductivity at low energy in the nonmagnetic state
excluding the Drude peak. A peak corresponding to an interband
transition at very low energies (w ~ 50 meV) shows up. (b) Same as
(a) for the tight-binding model of Graser ef al. (Ref. 51) with U =
Ju = 0 in the nonmagnetic state and U = 1.42 eV and Jy = 0.25U
in the magnetic state. See text for discussion. The Drude weights
for the various cases are o, (@ =0, U = 0) = 6.679, o (0 = 0,

U=142eV)=2.778, and o) (0 =0, U = 1.42 V) = 1.2062.

a fingerprint of the orbital differentiated regime, at least in all
the cases analyzed for our tight-binding model®® and the one
by Graser et al. (Ref. 51).

B. Optical conductivity

The optical conductivity is shown in Fig. 6 for the nonmag-
netic state corresponding to U = Jy = 0 (dotted lines) and
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for the magnetic state for U = 1.6 eV and Jy = 0.25U (solid
lines) using our model®® [Fig. 6(a)] and the one by Graser
et al>' [Fig. 6(b)]. A scattering rate of 20 meV is assumed in
the calculations.

Due to the tetragonal symmetry in the nonmagnetic state,
o (w) = ay/y(w). Beyond the Drude peak, at low frequencies,
interband transitions are clearly visible starting from 0.35 eV
and contribute to the conductivity up to energies above 5 eV.
In the following, we focus on the low-energy transitions.
As marked in Fig. 3(b) and following the squared vertices
in Fig. 2, the peaks in oy (w) and oy,(w) around 0.4 eV
originate in transitions at I' involving 37> — r?> — yz and
322 — r2 — zx, respectively. Similarly, the shoulders at 0.45
and 0.7 eV in 0, (w) come from interband transitions involving
zx — xy along Y — I' and yz — x> — y? close to T, but not
at I'. Symmetry-related transitions yz — xy along X — I" and
x —> x2— y2 close to I', but not at I', give an identical
contribution to oy,(w). While not easily identifiable in the
spectrum, interband transitions between the two hole pockets
at ' contribute at frequencies within the Drude peak. This
interband transition is very narrow, as can be seen in the inset
of Fig. 6(a) where the Drude peak has been subtracted from
the optical conductivity. This transition is allowed by the finite
e, content of the yz/zx dominated hole bands.?*

In the (7,0) magnetic state, o}, (w) # ay/y(w), as expected
from the tetragonal symmetry breaking. The two curves cross
many times through all the frequency range, namely, the sign
of the optical conductivity anisotropy is frequency dependent.
In the itinerant regime, for magnetic moments ~0.9 g similar
to the experimental ones, the main effect of magnetism is
the partial suppression of the Drude peak, which becomes
anisotropic, and the appearance of a magnetic peak [see
Fig. 6(a)]. This peak originates in transitions across a magnetic
gap between two anticrossed bands. The position of this
peak depends on the magnetic moment and is different for
0,x(w) and oy, (w) because, as it can be seen in Fig. 2, each
conductivity samples a different region in k space.

The magnetic peak in o,,(w) originates in the xy — yz
transition at the electron hole pocket at X along the X — M
direction and the folded yz — xy transition at the yz hole
pocket at I' along I' — Y [see Fig. 3(d)]. On the other hand,
the peak in o, (w) is due to a zx — xy transition close to ¥
along Y — M. A transition with the same energy happens at
the hole pocket in M. Thus, the peak in o,,(w) measures the
gap at the electron pocket at X and the hole pocket at I while
the one in o, (w) measures the gap at the electron pocket at Y
which is the same as at the hole pocket at M.

For the values reported in Fig. 6(a), the magnetic peak
in o (@) appears at larger frequencies than that in oy, ().
The gap at the electron pocket at Y depends on the size and
height of the hole pocket at M which is very sensitive to the
position of the As in the FeAs layer.*®>? Figure 6(b) shows
the optical conductivity corresponding to the tight-binding
model of Graser et al. in Ref. 51 for U =1.42 eV and
Jy = 0.25U. The magnetic moment is m = 0.91up, as for
the values used with our tight-binding model in Fig. 6(a).
However, the positions of the magnetic peaks are reversed,
with the magnetic peak on o, at a lower frequency than
that on o, in the Graser et al. case. The electronic bands
corresponding to this model are shown in Fig. 7. The xy hole
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FIG. 7. (Color online) Upper figures: Energy bands for the tight-binding model of Ref. 51 in the nonmagnetic (a) and (7,0) antiferromagnetic
state (¢) for U = Jy =0and U = 1.42 eV and Jy = 0.25U, respectively. Linewidths and colors reflect the orbital content yz = red, zx =

green, xy = blue, 372 — r?

= orange, and x> — y?> = black. Lower figures: Zoom of the band structures in the upper figures in the energy

region close to the Fermi level. (b) The allowed transitions are the same as in Fig. 3(b). (d) Transitions involving a nonfolded and a folded band

allowed in this case but not in Fig. 3(d) (see text).

pocket at M touches the Fermi level in the nonmagnetic bands.
Even though the bands are similar in the paramagnetic state
[compare Figs. 3(a) and 7(a)], the reconstructed bands in the
Y — M direction close to the Fermi level in Fig. 7(d) are very
different from those in our model [Fig. 3(d)]. The gaps at the
electron pockets differ in both models even though we have
chosen parameters such that the magnetic moment is the same.

In the two cases discussed here, the magnetic transitions at
both electron pockets are allowed. However, if the minimum
of any of the upper folded bands lies below the Fermi level, the
corresponding transition would be forbidden and the spectrum
strongly modified. This happens in Ref. 35 where a small
electron pocket is formed close to X in the X — M directions
(and correspondingly close to I' in the I' — Y direction)
resulting in the suppression of the o, magnetic peak observed
in our model and highlighted in Fig. 3(d). It can also happen
in other models close to Y if the hole pocket at M is below the
Fermi level in the noninteracting bands.

The magnetic peak is the main but not the only signature
of magnetism in the optical conductivity at low frequencies.
There are smaller peaks and plateaulike structures which
originate in transitions close to I' (and equivalently close
to X) between a folded band and a nonfolded band”* [see
Fig. 1(b)]. Whether these transitions are allowed depends on
the starting tight-binding model and the magnetic moment. For
example, in our model [see Fig. 3(d)], the gap in the zx hole
pocket along I' — X opens below the Fermi level at a value of
momentum k, for which the upper yz band is occupied and the
transitions involving these bands at this k point are forbidden.
On the contrary, in the Graser et al. model [see Fig. 7(d)],
these transitions are allowed and produce the peaks at 0.21
and 0.55 eV in oy, (w). The small contribution to o (@) below
the magnetic peak comes, on the other hand, from zx — xy
transitions along I' — Y.

With increasing magnetic moment, in the orbital differentia-
tion region, the shape of the spectrum changes (see Fig. 8), and
the spectral weight shifts to higher energies.’® The interband
transition between the 3z — r2 band below the Fermi level at T
and the yz band, strongly affected by the orbital differentiation
in Fig. 5, is active for o, (w). It produces a steplike feature in
the spectrum. However, because the spectrum is very sensitive
to parameters, it is not possible to signal an easily identifiable
fingerprint of this transition in the spectrum.

C. Raman spectra

The Bi, and By, Raman spectra in the nonmagnetic state
are plotted in Fig. 9(a). Both symmetries display a peak at
very small energies, however, the nature of these two peaks is
different. In B it corresponds to intraorbital transitions at the
electron pockets related to the Drude contribution to the optical
conductivity, and it is allowed by the finite scattering rate. In
By, it originates in the interband transition between the zx and
yz hole pockets close to I'. The rest of the spectrum comes from
interband transitions. The strong peak in B,, around 0.7 eV
corresponds to a transition between the 3z> — r? and the xy
hole pockets at M. The energy of these hole bands is very
sensitive to the As height in the FeAs layer and the transition
could be absent if both bands lie below the Fermi level. The
peak at 0.4 eV in By, originates in an interband transition at
I" between the 3z> — r2 hole band and the hole pockets with
non-negligible x> — y? content. For higher energies, there is
a large bump in By,. It starts with a steplike feature coming
from the transition at I" between the 3z — r? band below the
Fermi level and the x> — y? above.

In the magnetic state, the electron pockets become gapped.
The peak at low energies in By, disappears, while peaks at
the energy of these gaps appear. Bj, samples the two gaps
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FIG. 8. (Color online) (a) oy,(w) (top) and (b) o,y (w) in the
orbital differentiated region for U = 1.8 eV and Jy = 0.25U
(black), U =1.6 eV, Jy =0.25U, and electron filling n = 5.6
(red) using our tight-binding model (labeled tb), and for U = 1.53
eV and Jy =0.25U and n =6 (blue) using the Graser et al.
tight-binding model (Ref. 51) (labeled tb,). A scattering
rate of 20 meV is used. The Drude weights are o/’(w =
0,U=18¢eV,n=6)=16723, o(w0=0,U=16¢€V,n=
5.6) = 1.1, and o' (w=0,U =153eV, n=6)=1.05,
ol (w=0,U=18eV, n=06)=2.5277, o (w=0,U=
1.6 eV, n =5.6) = 4.9817, and a}’,g,bz(a) =0,U=1.53¢V,
n =6)=0.45.

responsible for the magnetic peaks in o, (w) and oy (). If
these two gaps are different enough, a two-peak structure
should be expected in Bi,. For the values displayed in
Fig. 9(a), these peaks arise at energies comparable to those of
the interband transition at I between the 3z> — r? band and
the hole pocket, also split by magnetism, and a wide structure
is observed.

By, is less sensitive to magnetism, as also seen
experimentally.” The low-energy peak from the transition
between the hole pockets at I" shifts to slightly higher energies.
The one at 0.7 eV acquires a double-peak structure and its
intensity is suppressed due to the gap opening at the xy hole
pocket at M. Spectral weight appears around 0.3 to 0.6 eV due
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FIG. 9. (Color online) (a) Bj, (black) and B,, (red) Raman
spectra. Low-frequency Raman spectrum for U = Jy =0 in the
nonmagnetic state (dotted lines) and for U = 1.6 eV and Jy = 0.25U
in the itinerant magnetic state (solid lines). (b) Main figure (inset) B,
(B»,) Raman spectrum for U = Jy = 0 (nonmagnetic state), U =
1.6 eV, and Jy = 0.25U (itinerant magnetic state) and U = 1.8 eV
and Jy = 0.25U (magnetic state, orbital differentiated regime). In
B\, the shape of the spectrum changes when entering into the orbital
differentiated region. The transition between the 37> — r? and x2 — y?
at I" is marked with an arrow. A scattering rate of 20 meV is used.

to transitions between a magnetic folded band and a nonfolded
one along I' — X and I" — Y directions.

B, samples the 3z° — r? — x? — y? transition at I" whose
shape is strongly affected when entering in the orbital
differentiated regime with increasing magnetic moment. As
shown in Fig. 9(b), the spectrum changes considerably in this
regime. Due to the modification of the x> — y? band shape,
shown in Fig. 5, the 3z> — r?> — x? — y? transition acquires a
peak shape instead of a step one. By, is less affected while the
spectral weight is shifted to higher energies.

V. DRUDE WEIGHT ANISOTROPY

Transport experiments in detwinned samples in the (7,0)
magnetic state have shown larger resistivity in the fer-
romagnetic y direction than in the antiferromagnetic x
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FIG. 10. (Color online) Drude weight anisotropy D, /D, as a function of interactions for three different Fe-As angles: ap..as = 33.2° as in
the slightly squashed tetrahedra found in LaFeAsO (left), ap..as = 35.3° as in a regular tetrahedra (center), and o as = 37.2° corresponding
to a slightly elongated tetrahedra (right). For small and intermediate values of the interaction, D, /D, strongly depends on the lattice structure.

direction.”>"2839 The anisotropy is sensitive to disorder and
doping. It changes sign in some hole-doped samples.>* Pro-
posals to explain the anisotropy include orbital ordering,!-**37
integrated or at the Fermi surface,® spin nematicity,*?
anisotropic Fermi velocities,>> and anisotropic scattering
from disorder in the anisotropic magnetic state.”® Fittings of
the Drude peak performed to study whether the anisotropy
originates in the Fermi velocities or in the scattering rate are
controversial.'®?° The magnetic state is anisotropic. Even if
the scattering has a strong effect on the resistivity anisotropy,
understanding the anisotropy originated in the reconstructed
band structure is necessary.

Within the mean-field framework above and using the band
velocities at the Fermi surface, we previously** calculated
the anisotropy of the Drude weight assuming a regular
tetrahedron ope.as = 35.3°. For not very large intraorbital
interactions, the experimental anisotropy was found. With
increasing interactions and magnetic moments, the sign of the
anisotropy changed. The experimental sign of the anisotropy
was concomitant with the smaller values of orbital ordering,
discarding orbital ordering as the mechanism for the observed
anisotropy.>> We proposed that the experimental anisotropy
originated in the topology and morphology of the Fermi
surface. Later, we argued that in the orbital differentiation
regime, the system gains kinetic energy in the ferromagnetic
y direction, inducing a sign change in the anisotropy.**

Here, we study the sensitivity of the anisotropy to small
changes in the lattice.® Figure 10 shows the Drude ratio
D, /D, calculated using Eq. (11) for three different values of
o, the angle between the Fe-As bond and the Fe plane: slightly
squashed, regular, and slightly elongated tetrahedra with
Ope-as = 33.2° (left), apeas = 35.3° (center), and ope.as =
37.2° (right), respectively. In spite of the different expressions
used to calculate the Drude weight, the anisotropy map of the
regular tetrahedron (middle figure) found here is remarkably
similar to that found in our previous work. This similarity
supports the interpretation of the Drude weight anisotropy in
terms of the Fermi surface velocity.*”

As expected, for large interactions well into the orbital
differentiated region,** D, /D, < 1 (blue color) for the three
values of the Fe-As angle. On the contrary, for small and in-
termediate interactions, the Drude weight anisotropy depends

strongly on the Fe-As angle. The experimental sign of the
anisotropy D, /D, > 1 (in yellow to red colors) is largely
suppressed in the squashed tetrahedron case. This sign of the
anisotropy is, on the other hand, preferred in the elongated
tetrahedron case. The values of the Drude ratio D, /D, are also
much larger in the elongated tetrahedron than in the regular
one. D./D, > 1 happens even in a relatively large area of
the phase diagram in the orbital differentiated region before
it switches sign for larger interactions. We believe the values
of the interactions relevant for iron pnictides are in the region
of the phase diagram with anisotropy sensitive to the Fe-As
angle. Such a dependence suggests that at least at the level of
the reconstructed band structure, the resistivity anisotropy is
not a robust fingerprint of the underlying electronic state.

VI. DISCUSSION

In this work, we have shown the potential of using the
velocity and Raman vertices to disentangle the orbital degree
of freedom in the optical conductivity and Raman spectrum
of multiorbital systems. The idea follows the use of Raman
vertices in cuprates to differentiate nodal and antinodal regions
in k space. The k dependence of the vertices depends on the
symmetry of the orbitals involved in the transition.

We have applied this method to interacting five-orbital mod-
els for iron superconductors defined in the 1-Fe unit cell. The
optical conductivity and Raman spectra in the magnetic and
nonmagnetic states have been calculated with the band struc-
ture of these five orbital models treated at the mean-field level.
These mean-field bands do not include the renormalization or
finite lifetimes due to interactions. Consequently, quantitative
agreement between the calculated spectrum and the experi-
ments is not expected. On the other hand, the vertex analysis is
valid independently of the approximation used to calculate the
bands and valuable qualitative information can be obtained.

We have seen that interband transitions involving one or
both hole pockets at I" contribute to the optical conductivity
in the far and mid-infrared regions of the spectrum. For
non-negligible scattering rates, it can be difficult to sepa-
rate these transitions from the Drude peak. These results
confirm previous calculations®* which alerted against using
the extended Drude model to analyze the optical spectrum
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of iron superconductors.'>?* A feature in the optical spec-
trum of K-doped Ba-122 at frequencies 50-250 cm™' has
been interpreted in terms of a pseudogap®>> precursor
of the superconducting gap. Previous works had measured
similar features and discussed them in terms of interband
transitions'> or localized states.!® Our calculations show
that the transition between the two hole pockets at I' is
optically active but remains hidden below the Drude peak
(see also Ref. 24). As it is allowed, only in a very small
region of k space it gives a very narrow contribution to
the optical conductivity. Experimentally, it could show up
at frequencies comparable to those of the superconducting
gap, so its presence should be considered when discussing
the spectrum. We note that this transition is active in the By,
symmetry (in the 1-Fe unit cell). This fact could help clarify
the nature of the observed 50-250 cm~! feature in the optical
conductivity.?*>

Experiments in the magnetic state show a suppressed
conductivity below ~700 cm~! and the appearance of a
peak around 1000 cm™' (Refs. 10,12-14,16,18,21). Bumplike
features show up around 350 cm~'. In detwinned samples, the
Drude peak is anisotropic o, (w) > ay’y (w) atlow energies, but
the anisotropy reverses at higher energies.'®?"* The Raman
spectra show a similar suppression and a bump in all the
symmetries, and a peak only in B, symmetry in the 1-Fe
unit cell (By, in the FeAs unit cell).”

As discussed in Sec. IVB, in the itinerant regime the
magnetic peaks in o, (w) and o)/,y(w), respectively, sample
the gaps opened at the electron pocket at ¥ and X (folded
in the hole pockets at M and I') via a transition between
two folded anticrossing bands. The difference between peaks
thus measures the electron pockets gap anisotropy and is
not a consequence of orbital order.’! The experimental sign
of the anisotropy has been reproduced previously in several
theoretical works**~3%3%7 but had not been explained in these
terms. This anisotropy and even the possibility that any of
these transitions is forbidden is sensitive to details of the
underlying band structure (see Sec. IV B). We have shown
that the anisotropy of the Drude weight due to the band
reconstruction in the magnetic state is also very sensitive to
small changes in the lattice structure.

The low-energy Bj, Raman spectrum samples the electron
pockets. These become gapped in the magnetic state, hence, the
B, spectrum shows peaks at the energy of the corresponding
gaps. These peaks are expected around the same energies as
observed in o/, (w) and rr}/,y(w). If these gaps are close enough
in magnitude, a single peak instead of two would show up in
the experimental Bj, spectrum. Some care is required when
interpreting the spectrum as an interband transition between

PHYSICAL REVIEW B 87, 075136 (2013)

3z% — r? band and the hole pockets at I active in By, could
be close in energy. This interband transition is also affected
by magnetism, especially because it involves the hole pockets
which stop being degenerate. Due to the orbital symmetry,
B, does not sample the magnetic gaps at the electron pockets.
Therefore, we do not expect a peak in By, at these frequencies.
Our results are compatible with experiments. In the magnetic
state, By shows a peak at an energy similar to the one at
which the peaks in o) (w) and ay’y(w) are observed, while
there is no peak in By, at this energy.

The bumplike features around 350 cm™" in optical conduc-
tivity come most probably from transitions between a folded
and anonfolded band (see also Ref. 35). Even if experimentally
bumps appear at similar energies in o, (w) and oy (),
following the vertex analysis we believe that they originate
in different regions of k space. Low-energy transitions along
I' — X contribute to 0§y(w) and those along I — Y contribute
to o, (w). Given the anisotropy along these two directions, the
bumps at oy, (w) and oy (w) are not expected to show equal

1

spectra, which is compatible with experiments.?!

B,, samples partially the excitations that we have previ-
ously assigned to the bumps in o] (w) and a}’,y(a)). Thus,
the presence of the bump in experiments in this symmetry
is consistent within our expectations. On the other hand, we
do not expect these excitations to be active in By,. The feature
observed experimentally in By, around these energies should
have different origin.

In the orbital differentiation region shown in the magnetic
mean-field phase diagram (see Fig. 4), the spectrum is strongly
modified with a general shift to higher energies with no
clearly identifiable feature except for the B, signal. For yz to
become a half-filled gapped state at the orbital differentiation
transition, there is a shift of the yz orbital to higher energies
that modifies the 37> — r?> — x? — y? transition at I" active
in Bj,. As a result, the step feature typical of the itinerant
regime becomes a peak. Finally, the 3z — r> — xy interband
transition at M is active in B>, Raman symmetry, which could
help clarify whether any of these bands cross the Fermi level
and complement photoemission measurements.
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