102 research outputs found
Multi-physics analysis for Rubber-Cement applications in building and architectural fields. A preliminary analysis
Generally, in most countries, there are no strict regulations regarding tire disposal. Hence, tires end up thrown in seas and lands as well as being burnt, harming the living beings, and are therefore considered a very dangerous pollution source for the environment. Over the past few years, several researchers have worked on incorporating shredded/powdered rubber tires into cement-based material. This strategy shows a dual functionality: Economic–environmental benefits and technological functionalization of the building material. Rubber-modified cement materials show interesting engineering and architectural properties due to the physical-chemical nature of the tire rubber aggregates. However, the abovementioned performances are affected by type, size, and content of polymer particles used in the cement-based mixtures production. Whereas an increase in the rubber content in the cement mix will negatively affect the mechanical properties of the material as a decrease in its compression strength. This aspect is crucial for the use of the material in building applications, where proper structural integrity must be guaranteed. In this context, the development of innovative manufacturing technologies and the use of multi-physics simulation software represent useful approaches for the study of shapes and geometries designed to maximize the technological properties of the material. After an overview on the performances of 3D printable rubber-cement mixtures developed in our research laboratory, a preliminary experimental Finite Element Method (FEM) analysis will be described. The modeling work aims to highlight how the topology optimization allows maximizing of the physical-mechanical performances of a standard rubber-cement component for building-architectural applications
Active deformation and relief evolution in the western Lurestan region of the Zagros mountain belt: new insights from tectonic geomorphology analysis and finite element modeling
none7noopenBasilici, M.; Ascione, A.; Megna, A.; Santini, S.; Tavani, S.; Valente, E.; Mazzoli, S.Basilici, M.; Ascione, A.; Megna, A.; Santini, S.; Tavani, S.; Valente, E.; Mazzoli, S
Geomorphology of Naples and the Campi Flegrei: human and natural landscapes in a restless land
Naples and its surroundings are a very young landscape, originated from 40 ka in response to strong and explosive volcanic processes, which created the Campi Flegrei, one of the largest volcanic fields of the world. Despite the repeated and continuous volcanic activity, this territory was selected for human settlements since Neolithic times and hosted some of the most important Greek and Roman towns in the Mediterranean area (e.g., Cuma, Parthenope, Neapolis, Baia and Puteoli). Geoarcheological data and historical chronicles testify to human coexistence with eruptions, bradyseismic ground motions, coastline changes, floods and landslides. With the aim of describing the geomorphological evolution of this area to a wide audience, including also non-experts, we constructed a synthetic geomorphological map of the area and sketches that synthesise the main stages of the geomorphological evolution of the historical centre of Naples and the coastal belt of the Gulf of Pozzuoli during the last millennia
Low-Intensity Pulsed Ultrasound in the Treatment of Nonunions and Fresh Fractures: A Case Series
It is estimated that approximately 5% to 10% of fractures will evolve into nonunions. Nonunions have a significant impact on patient quality of life and on socioeconomic costs. Low-intensity pulsed ultrasound (LIPUS) is a non-invasive therapy widely used within the orthopedic community to accelerate the healing of fresh fractures, to minimize delayed healing, and to promote healing of nonunions. In this case series, 46 nonunions and 19 fresh fractures were treated with LIPUS for at least three months or until fracture healing. Bone healing was assessed both at a radiological and a functional level. Of the nonunions healed, 89% had a mean healing time of 89 ± 53 days. In the group of fresh fractures, the healing percentage was 95% with a mean healing time of 46 ± 28 days. LIPUS treatment is proven to be safe and well tolerated; there were no adverse events related to the use of the device, even in the presence of internal fixations and infections. LIPUS therapy should be considered a low-risk option both as an adjunct to surgery or as a standalone therapy in the management of nonunion and fresh fractures
New cellular imaging-based method to distinguish the SPG4 subtype of hereditary spastic paraplegia
Background and purpose: Microtubule defects are a common feature in several neurodegenerative disorders, including hereditary spastic paraplegia. The most frequent form of hereditary spastic paraplegia is caused by mutations in the SPG4/SPAST gene, encoding the microtubule severing enzyme spastin. To date, there is no effective therapy available but spastin-enhancing therapeutic approaches are emerging; thus prognostic and predictive biomarkers are urgently required. Methods: An automated, simple, fast and non-invasive cell imaging-based method was developed to quantify microtubule cytoskeleton organization changes in lymphoblastoid cells and peripheral blood mononuclear cells. Results: It was observed that lymphoblastoid cells and peripheral blood mononuclear cells from individuals affected by SPG4-hereditary spastic paraplegia show a polarized microtubule cytoskeleton organization. In a pilot study on freshly isolated peripheral blood mononuclear cells, our method discriminates SPG4-hereditary spastic paraplegia from healthy donors and other hereditary spastic paraplegia subtypes. In addition, it is shown that our method can detect the effects of spastin protein level changes. Conclusions: These findings open the possibility of a rapid, non-invasive, inexpensive test useful to recognize SPG4-hereditary spastic paraplegia subtype and evaluate the effects of spastin-enhancing drug in non-neuronal cells
The Renaissance of KRAS Targeting in Advanced Non-Small-Cell Lung Cancer: New Opportunities Following Old Failures
: Non-small cell lung cancer (NSCLC) represents the perfect paradigm of 'precision medicine' due to its complex intratumoral heterogeneity. It is truly characterized by a range of molecular alterations that can deeply influence the natural history of this disease. Several molecular alterations have been found over time, paving the road to biomarker-driven therapy and radically changing the prognosis of 'oncogene addicted' NSCLC patients. Kirsten rat sarcoma (KRAS) mutations are present in up to 30% of NSCLC (especially in adenocarcinoma histotype) and have been identified decades ago. Since its discovery, its molecular characteristics and its marked affinity to a specific substrate have led to define KRAS as an undruggable alteration. Despite that, many attempts have been made to develop drugs capable of targeting KRAS signaling but, until a few years ago, these efforts have been unsuccessful. Comprehensive genomic profiling and wide-spectrum analysis of genetic alterations have only recently allowed to identify different types of KRAS mutations. This tricky step has finally opened new frontiers in the treatment approach of KRAS-mutant patients and might hopefully increase their prognosis and quality of life. In this review, we aim to highlight the most interesting aspects of (epi)genetic KRAS features, hoping to light the way to the state of art of targeting KRAS in NSCLC
Serum Neurofilament Light Chain in Replication Factor Complex Subunit 1 CANVAS and Disease Spectrum
Background:
Biallelic intronic AAGGG repeat expansions in the replication factor complex subunit 1 (RFC1) gene were identified as the leading cause of cerebellar ataxia, neuropathy, vestibular areflexia syndrome. Patients exhibit significant clinical heterogeneity and variable disease course, but no potential biomarker has been identified to date.
//
Objectives:
In this multicenter cross-sectional study, we aimed to evaluate neurofilament light (NfL) chain serum levels in a cohort of RFC1 disease patients and to correlate NfL serum concentrations with clinical phenotype and disease severity.
//
Methods:
Sixty-one patients with genetically confirmed RFC1 disease and 48 healthy controls (HCs) were enrolled from six neurological centers. Serum NfL concentration was measured using the single molecule array assay technique.
//
Results:
Serum NfL concentration was significantly higher in patients with RFC1 disease compared to age- and-sex-matched HCs (P < 0.0001). NfL level showed a moderate correlation with age in both HCs (r = 0.4353, P = 0.0020) and patients (r = 0.4092, P = 0.0011). Mean NfL concentration appeared to be significantly higher in patients with cerebellar involvement compared to patients without cerebellar dysfunction (27.88 vs. 21.84 pg/mL, P = 0.0081). The association between cerebellar involvement and NfL remained significant after controlling for age and sex (β = 0.260, P = 0.034).
//
Conclusions:
Serum NfL levels are significantly higher in patients with RFC1 disease compared to HCs and correlate with cerebellar involvement. Longitudinal studies are warranted to assess its change over time
Front-Ends and Phased Array Feeds for the Sardinia Radio Telescope
We describe the design and performance of the Front-
Ends for the 64-m diameter Sardinia Radio Telescope
(SRT). An early science program was completed with SRT
in August 2016, following a successful technical and
scientific commissioning of the telescope and of its
instrumentation. We give an overview of the three
cryogenic Front-Ends, covering four bands, that were
deployed on SRT during the early science program: P-band
(305-410 MHz), L-band (1.3-1.8 GHz), high C-band (5.7-
7.7 GHz) and K-band (18-26.5 GHz).
In addition, we describe the cryogenic Front-Ends that
are currently under development, among which a seven beam
for S-band (3.0-4.5 GHz) a mono-feed for Low-Cband
(4.2-5.6 GHz), a 19-element for Q-band (33-50 GHz)
and a mono-feed for a 3 mm band.
Finally, we describe the development status of a
demonstrator of a cryogenic C-band Phased Array Feed
(PAF) for potential use at the SRT primary focus
Clinical Features, Cardiovascular Risk Profile, and Therapeutic Trajectories of Patients with Type 2 Diabetes Candidate for Oral Semaglutide Therapy in the Italian Specialist Care
Introduction: This study aimed to address therapeutic inertia in the management of type 2 diabetes (T2D) by investigating the potential of early treatment with oral semaglutide. Methods: A cross-sectional survey was conducted between October 2021 and April 2022 among specialists treating individuals with T2D. A scientific committee designed a data collection form covering demographics, cardiovascular risk, glucose control metrics, ongoing therapies, and physician judgments on treatment appropriateness. Participants completed anonymous patient questionnaires reflecting routine clinical encounters. The preferred therapeutic regimen for each patient was also identified. Results: The analysis was conducted on 4449 patients initiating oral semaglutide. The population had a relatively short disease duration (42%  60% of patients, and more often than sitagliptin or empagliflozin. Conclusion: The study supports the potential of early implementation of oral semaglutide as a strategy to overcome therapeutic inertia and enhance T2D management
- …