44 research outputs found

    Evaluation of six CTLA-4 polymorphisms in high-risk melanoma patients receiving adjuvant interferon therapy in the He13A/98 multicenter trial

    Get PDF
    <p>ABSTRACT</p> <p>Purpose</p> <p>Interferon is approved for adjuvant treatment of patients with stage IIb/III melanoma. The toxicity and uncertainty regarding survival benefits of interferon have qualified its acceptance, despite significant durable relapse prevention in a fraction of patients. Predictive biomarkers that would enable selection of patients for therapy would have a large impact upon clinical practice. Specific CTLA-4 polymorphisms have previously shown an association with response to CTLA-4 blockade in patients with metastatic melanoma and the development of autoimmunity.</p> <p>Experimental design</p> <p>286 melanoma patients and 288 healthy controls were genotyped for six CTLA-4 polymorphisms previously suggested to be important (AG 49, CT 318, CT 60, JO 27, JO30 and JO 31). Specific allele frequencies were compared between the healthy and patient populations, as well as presence or absence of these in relation to recurrence. Alleles related to autoimmune disease were also investigated.</p> <p>Results</p> <p>No significant differences were found between the distributions of CTLA-4 polymorphisms in the melanoma population compared with healthy controls. Relapse free survival (RFS) and overall survival (OS) did not differ significantly between patients with the alleles represented by these polymorphisms. No correlation between autoimmunity and specific alleles was shown. The six polymorphisms evaluated where strongly associated (Fisher's exact p-values < 0.001 for all associations) and significant linkage disequilibrium among these was indicated.</p> <p>Conclusion</p> <p>No polymorphisms of CTLA-4 defined by the SNPs studied were correlated with improved RFS, OS, or autoimmunity in this high-risk group of melanoma patients.</p

    Human pancreatic islet transplantation: an update and description of the establishment of a pancreatic islet isolation laboratory

    Get PDF
    Type 1 diabetes mellitus (T1DM) is associated with chronic complications that lead to high morbidity and mortality rates in young adults of productive age. Intensive insulin therapy has been able to reduce the likelihood of the development of chronic diabetes complications. However, this treatment is still associated with an increased incidence of hypoglycemia. In patients with "brittle T1DM", who have severe hypoglycemia without adrenergic symptoms (hypoglycemia unawareness), islet transplantation may be a therapeutic option to restore both insulin secretion and hypoglycemic perception. The Edmonton group demonstrated that most patients who received islet infusions from more than one donor and were treated with steroid-free immunosuppressive drugs displayed a considerable decline in the initial insulin independence rates at eight years following the transplantation, but showed permanent C-peptide secretion, which facilitated glycemic control and protected patients against hypoglycemic episodes. Recently, data published by the Collaborative Islet Transplant Registry (CITR) has revealed that approximately 50% of the patients who undergo islet transplantation are insulin independent after a 3-year follow-up. Therefore, islet transplantation is able to successfully decrease plasma glucose and HbA1c levels, the occurrence of severe hypoglycemia, and improve patient quality of life. The goal of this paper was to review the human islet isolation and transplantation processes, and to describe the establishment of a human islet isolation laboratory at the Endocrine Division of the Hospital de Clínicas de Porto Alegre - Rio Grande do Sul, Brazil

    HSP60 as a Target of Anti-Ergotypic Regulatory T Cells

    Get PDF
    The 60 kDa heat shock protein (HSP60) has been reported to influence T-cell responses in two ways: as a ligand of toll-like receptor 2 signalling and as an antigen. Here we describe a new mechanism of T-cell immuno-regulation focused on HSP60: HSP60 is up-regulated and presented by activated T cells (HSP60 is an ergotope) to regulatory (anti-ergotypic) T cells. Presentation of HSP60 by activated T cells was found to be MHC-restricted and dependent on accessory molecules - CD28, CD80 and CD86. Anti-ergotypic T cells responded to T-cell HSP60 by proliferation and secreted IFNγ and TGFβ1. In vitro, the anti-ergotypic T cells inhibited IFNγ production by their activated T-cell targets. In vivo, adoptive transfer of an anti-ergotypic HSP60-specific T-cell line led to decreased secretion of IFNγ by arthritogenic T cells and ameliorated adjuvant arthritis (AA). Thus, the presentation of HSP60 by activated T cells turns them into targets for anti-ergotypic regulatory T cells specific for HSP60. However, the direct interaction between the anti-ergotypic T regulators (anti-HSP60) and the activated T cells also down-regulated the regulators. Thus, by functioning as an ergotope, HSP60 can control both the effector T cells and the regulatory HSP60-specific T cells that control them

    Innate and adaptive immunity to human beta cell lines:implications for beta cell therapy

    Get PDF
    AIMS/HYPOTHESIS: Genetically engineered human beta cell lines provide a novel source of human beta cells to study metabolism, pharmacology and beta cell replacement therapy. Since the immune system is essentially involved in beta cell destruction in type 1 diabetes and after beta cell transplantation, we investigated the interaction of human beta cell lines with the immune system to resolve their potential for immune intervention protocol studies. METHODS: Human pancreatic beta cell lines (EndoC-βH1 and ECi50) generated by targeted oncogenesis in fetal pancreas were assessed for viability after innate and adaptive immune challenges. Beta cell lines were pre-conditioned with T helper type 1 (Th1) cytokines or high glucose to mimic inflammatory and hyperglycaemia-stressed conditions. Beta cells were then co-cultured with auto- and alloreactive cytotoxic T cells (CTL), natural killer (NK) cells, supernatant fraction from activated autoreactive Th1 cells, or alloantibodies in the presence of complement or effector cells. RESULTS: Low HLA expression protected human beta cell lines from adaptive immune destruction, but it was associated with direct killing by activated NK cells. Autoreactive Th1 cell inflammation, rather than glucose stress, induced increased beta cell apoptosis and upregulation of HLA, increasing beta cell vulnerability to killing by auto- and alloreactive CTL and alloreactive antibodies. CONCLUSIONS/INTERPRETATION: We demonstrate that genetically engineered human beta cell lines can be used in vitro to assess diverse immune responses that may be involved in the pathogenesis of type 1 diabetes in humans and beta cell transplantation, enabling preclinical evaluation of novel immune intervention strategies protecting beta cells from immune destruction. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00125-015-3779-1) contains peer-reviewed but unedited supplementary material, which is available to authorised users
    corecore