197 research outputs found

    Effects of long-term exposure of gelatinated and non-gelatinated cadmium telluride quantum dots on differentiated PC12 cells

    Get PDF
    Background: The inherent toxicity of unmodified Quantum Dots (QDs) is a major hindrance to their use in biological applications. To make them more potent as neuroprosthetic and neurotherapeutic agents, thioglycolic acid (TGA) capped CdTe QDs, were coated with a gelatine layer and investigated in this study with differentiated pheochromocytoma 12 (PC12) cells. The QD - cell interactions were investigated after incubation periods of up to 17 days by MTT and APOTOX-Glo Triplex assays along with using confocal microscopy. Results: Long term exposure (up to 17 days) to gelatinated TGA-capped CdTe QDs of PC12 cells in the course of differentiation and after neurites were grown resulted in dramatically reduced cytotoxicity compared to nongelatinated TGA-capped CdTe QDs. Conclusion: The toxicity mechanism of QDs was identified as caspase-mediated apoptosis as a result of cadmium leaking from the core of QDs. It was therefore concluded that the gelatine capping on the surface of QDs acts as a barrier towards the leaking of toxic ions from the core QDs in the long term (up to 17 days)

    Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation

    Get PDF
    Background: Species generally have a fixed number of chromosomes in the cell nuclei while between-species differences are common and often pronounced. These differences could have evolved through multiple speciation events, each involving the fixation of a single chromosomal rearrangement. Alternatively, marked changes in the karyotype may be the consequence of within-species accumulation of multiple chromosomal fissions/fusions, resulting in highly polymorphic systems with the subsequent extinction of intermediate karyomorphs. Although this mechanism of chromosome number evolution is possible in theory, it has not been well documented. Results: We present the discovery of exceptional intraspecific variability in the karyotype of the widespread Eurasian butterfly Leptidea sinapis. We show that within this species the diploid chromosome number gradually decreases from 2n = 106 in Spain to 2n = 56 in eastern Kazakhstan, resulting in a 6000 km-wide cline that originated recently (8,500 to 31,000 years ago). Remarkably, intrapopulational chromosome number polymorphism exists, the chromosome number range overlaps between some populations separated by hundreds of kilometers, and chromosomal heterozygotes are abundant. We demonstrate that this karyotypic variability is intraspecific because in L. sinapis a broad geographical distribution is coupled with a homogenous morphological and genetic structure. Conclusions: The discovered system represents the first clearly documented case of explosive chromosome number evolution through intraspecific and intrapopulation accumulation of multiple chromosomal changes. Leptidea sinapis may be used as a model system for studying speciation by means of chromosomally-based suppressed recombination mechanisms, as well as clinal speciation, a process that is theoretically possible but difficult to document. The discovered cline seems to represent a narrow time-window of the very first steps of species formation linked to multiple chromosomal changes that have occurred explosively. This case offers a rare opportunity to study this process before drift, dispersal, selection, extinction and speciation erase the traces of microevolutionary events and just leave the final picture of a pronounced interspecific chromosomal difference

    Leg blood flow measurements using venous occlusion plethysmography during head-up tilt

    Get PDF
    We tested whether venous occlusion plethysmography (VOP) is an appropriate method to measure calf blood flow (CBF) during head-up tilt (HUT). CBF measured with VOP was compared with superficial femoral artery blood flow as measured by Doppler ultrasound during incremental tilt angles. Measurements of both methods correlated well (rΒ =Β 0.86). Reproducibility of VOP was fair in supine position and 30Β° HUT (CV: 11%–15%). This indicates that VOP is an applicable tool to measure leg blood flow during HUT, especially up to 30Β° HUT

    Less Anterior Knee Pain with a Mobile-bearing Prosthesis Compared with a Fixed-bearing Prosthesis

    Get PDF
    Anterior knee pain is one of the major short-term complaints after TKA. Since the introduction of the mobile-bearing TKA, numerous studies have attempted to confirm the theoretical advantages of a mobile-bearing TKA over a fixed-bearing TKA but most show little or no actual benefits. The concept of self-alignment for the mobile bearing suggests the posterior-stabilized mobile-bearing TKA would provide a lower incidence of anterior knee pain compared with a fixed-bearing TKA. We therefore asked whether the posterior-stabilized mobile-bearing knee would in fact reduce anterior knee pain. We randomized 103 patients scheduled for cemented three-component TKA for osteoarthrosis in a prospective, double-blind clinical trial. With a 1-year followup, more patients experienced persistent anterior knee pain in the posterior-stabilized fixed-bearing group (10 of 53, 18.9%) than in the posterior-stabilized mobile-bearing group (two of 47, 4.3%). No differences were observed for range of motion, visual analog scale for pain, Oxford 12-item questionnaire, SF-36, or the American Knee Society score. The posterior-stabilized mobile-bearing knee therefore seems to provide a short-term advantage compared with the posterior-stabilized fixed-bearing knee

    Downsizing a human inflammatory protein to a small molecule with equal potency and functionality

    Get PDF
    A significant challenge in chemistry is to rationally reproduce the functional potency of a protein in a small molecule, which is cheaper to manufacture, non-immunogenic, and also both stable and bioavailable. Synthetic peptides corresponding to small bioactive protein surfaces do not form stable structures in water and do not exhibit the functional potencies of proteins. Here we describe a novel approach to growing small molecules with protein-like potencies from a functionally important amino acid of a protein. A 77-residue human inflammatory protein (complement C3a) important in innate immunity is rationally transformed to equipotent small molecules, using peptide surrogates that incorporate a turn-inducing heterocycle with correctly positioned hydrogen-bond-accepting atoms. Small molecule agonists (molecular weigh

    EBP1 Is a Novel E2F Target Gene Regulated by Transforming Growth Factor-Ξ²

    Get PDF
    Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1) promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-Ξ²1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context

    A Potential Regulatory Role for Intronic microRNA-338-3p for Its Host Gene Encoding Apoptosis-Associated Tyrosine Kinase

    Get PDF
    MicroRNAs (miRNAs) are important gene regulators that are abundantly expressed in both the developing and adult mammalian brain. These non-coding gene transcripts are involved in post-transcriptional regulatory processes by binding to specific target mRNAs. Approximately one third of known miRNA genes are located within intronic regions of protein coding and non-coding regions, and previous studies have suggested a role for intronic miRNAs as negative feedback regulators of their host genes. In the present study, we monitored the dynamic gene expression changes of the intronic miR-338-3p and miR-338-5p and their host gene Apoptosis-associated Tyrosine Kinase (AATK) during the maturation of rat hippocampal neurons. This revealed an uncorrelated expression pattern of mature miR-338 strands with their host gene. Sequence analysis of the 3β€² untranslated region (UTR) of rat AATK mRNA revealed the presence of two putative binding sites for miR-338-3p. Thus, miR-338-3p may have the capacity to modulate AATK mRNA levels in neurons. Transfection of miR-338-3p mimics into rat B35 neuroblastoma cells resulted in a significant decrease of AATK mRNA levels, while the transfection of synthetic miR-338-5p mimics did not alter AATK levels. Our results point to a possible molecular mechanism by which miR-338-3p participates in the regulation of its host gene by modulating the levels of AATK mRNA, a kinase which plays a role during differentiation, apoptosis and possibly in neuronal degeneration

    Differential Expression of Rubisco in Sporophytes and Gametophytes of Some Marine Macroalgae

    Get PDF
    Rubisco (ribulose-1, 5-bisphosphate carboxylase/oxygenase), a key enzyme of photosynthetic CO2 fixation, is one of the most abundant proteins in both higher plants and algae. In this study, the differential expression of Rubisco in sporophytes and gametophytes of four seaweed species β€” Porphyra yezoensis, P. haitanensis, Bangia fuscopurpurea (Rhodophyte) and Laminaria japonica (Phaeophyceae) β€” was studied in terms of the levels of transcription, translation and enzyme activity. Results indicated that both the Rubisco content and the initial carboxylase activity were notably higher in algal gametophytes than in the sporophytes, which suggested that the Rubisco content and the initial carboxylase activity were related to the ploidy of the generations of the four algal species

    CD36 Inhibitors Reduce Postprandial Hypertriglyceridemia and Protect against Diabetic Dyslipidemia and Atherosclerosis

    Get PDF
    CD36 is recognized as a lipid and fatty acid receptor and plays an important role in the metabolic syndrome and associated cardiac events. The pleiotropic activity and the multiple molecular associations of this scavenger receptor with membrane associated molecules in different cells and tissues have however questioned its potential as a therapeutic target. The present study shows that it is possible to identify low molecular weight chemicals that can block the CD36 binding and uptake functions. These inhibitors were able to reduce arterial lipid deposition, fatty acid intestinal transit, plasma concentration of triglycerides and glucose, to improve insulin sensitivity, glucose tolerance and to reduce the plasma concentration of HbAc1 in different and independent rodent models. Correlation between the anti-CD36 activity of these inhibitors and the known pathophysiological activity of this scavenger receptor in the development of atherosclerosis and diabetes were observed at pharmacological doses. Thus, CD36 might represent an attractive therapeutic target
    • …
    corecore