3,439 research outputs found
Using phage Lytic Enzymes to Control Pathogenic Bacteria
Our laboratory has developed phage lytic enzymes to prevent infection by specifically destroying disease bacteria on mucous membranes and in blood. Enzymes specific for S. pneumoniae and S. pyogenes have been developed to be used nasally and orally to control these organisms in environments such as hospitals and nursing homes to prevent or markedly reduce serious infections by these pathogens. In addition, a B. anthracis-specific enzyme was developed to kill the vegetative forms of these bacteria in the blood of infected individuals. In animal studies, >80% of mice colonized mucosally or infected intravenously with pathogenic bacteria were decolonized or survived after a single enzyme treatment delivered to the same site of colonization or infection
User expectations and perceptions towards new public transport infrastructure: evaluating a cable car in BogotĂĄ
Cable cars are a viable alternative to improve citizensâ accessibility in zones with limitations on urban public transport supply due to the topography. In Latin America, such systems have recently been implemented in zones with high levels of poverty and vulnerability. Although the social implications of their implementation are relevant, individual expectations of these systems and how current changes in travel conditions and quality of life are perceived have not been widely reported in the literature. This paper aims to evaluate usersâ expectations and perceptions of a new cable car in the southern periphery of BogotĂĄ (Colombia). We conducted a panel survey before (nâ=â341) and after (nâ=â301) the cable car started operations to evaluate the ranking of preferences toward a set of possible benefits of the project. We estimated discrete choice models to analyze the statistical differences between the expectations and perceptions before and after changes. Results suggest that travel time reductions, comfort improvements, and in-vehicle security are the benefits most valued by the users. Even though the project meets expectations of these aspects, it seems to fall short in expectations of reductions of pollution. Individualsâ experience with the cable car shapes their perceptions of the system. We found that perceptions differ between those who have used the service at least once and those who never did. Policy implications derived from this study might be of interest to decision-makers seeking to guarantee the public acceptability of urban projects
Statin pretreatment diminishes the levels of myocardial ischemia markers not only in CABG
A response to Ege E, Dereli Y, Kurban S, Sarigul A: Atorvastatin pretreatment diminishes the levels of myocardial ischemia markers early after CABG operation: an observational study. J Cardiothorac Surg 2010, 5:60
Epidemiological and transmissibility analysis of influenza A(H1N1)v in a southern hemisphere setting: Peru
We present a preliminary analysis of 1,771 confirmed cases of influenza A(H1N1)v reported in Peru by 17 July including the frequency of the clinical characteristics, the spatial and age distribution of the cases and the estimate of the transmission potential. Age-specific frequency of cases was highest among school age children and young adults, with the lowest frequency of cases among seniors, a pattern that is consistent with reports from other countries. Estimates of the reproduction number lie in the range of 1.2 to 1.7, which is broadly consistent with previous estimates for this pandemic in other regions. Validation of these estimates will be possible as additional data become available
Caspase-8 binding to cardiolipin in giant unilamellar vesicles provides a functional docking platform for bid
Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the gap between death receptors and mitochondria
MiniBooNE and LSND data: non-standard neutrino interactions in a (3+1) scheme versus (3+2) oscillations
The recently observed event excess in MiniBooNE anti-neutrino data is in
agreement with the LSND evidence for electron anti-neutrino appearance. We
propose an explanation of these data in terms of a (3+1) scheme with a sterile
neutrino including non-standard neutrino interactions (NSI) at neutrino
production and detection. The interference between oscillations and NSI
provides a source for CP violation which we use to reconcile different results
from neutrino and anti-neutrino data. Our best fit results imply NSI at the
level of a few percent relative to the standard weak interaction, in agreement
with current bounds. We compare the quality of the NSI fit to the one obtained
within the (3+1) and (3+2) pure oscillation frameworks. We also briefly comment
on using NSI (in an effective two-flavour framework) to address a possible
difference in neutrino and anti-neutrino results from the MINOS experiment.Comment: 28 pages, 9 figures, discussion improved, new appendix added,
conclusions unchange
Medial Entorhinal Cortex Selectively Supports Temporal Coding by Hippocampal Neurons
Recent studies have shown that hippocampal âtime cellsâ code for sequential moments in temporally organized experiences. However, it is currently unknown whether these temporal firing patterns critically rely on upstream cortical input. Here we employ an optogenetic approach to explore the effect of large-scale inactivation of the medial entorhinal cortex on temporal, as well as spatial and object, coding by hippocampal CA1 neurons. Medial entorhinal inactivation produced a specific deficit in temporal coding in CA1 and resulted in significant impairment in memory across a temporal delay. In striking contrast, spatial and object coding remained intact. Further, we extended the scope of hippocampal phase precession to include object information relevant to memory and behavior. Overall, our work demonstrates that medial entorhinal activity plays an especially important role for CA1 in temporal coding and memory across time
Influence of spin reorientation on magnetocaloric effect in NdAl2: A microscopic model
We report a theoretical investigation about the influence of the spin reorientation from easy magnetic direction to the applied magnetic field direction on the magnetocaloric properties of NdAl2. This compound was fully investigated using a model Hamiltonian which includes the Zeeman-exchange interactions and the crystalline electrical field, which are responsible for the magnetic anisotropy. All theoretical results were obtained using the proper model parameters for NdAl2, found in the literature. The existence of a minimum in magnetic entropy change below the phase transition was predicted and ascribed to the strong jump on the spin reorientation.74
Superconformal Flavor Simplified
A simple explanation of the flavor hierarchies can arise if matter fields
interact with a conformal sector and different generations have different
anomalous dimensions under the CFT. However, in the original study by Nelson
and Strassler many supersymmetric models of this type were considered to be
'incalculable' because the R-charges were not sufficiently constrained by the
superpotential. We point out that nearly all such models are calculable with
the use of a-maximization. Utilizing this, we construct the simplest
vector-like flavor models and discuss their viability. A significant constraint
on these models comes from requiring that the visible gauge couplings remain
perturbative throughout the conformal window needed to generate the
hierarchies. However, we find that there is a small class of simple flavor
models that can evade this bound.Comment: 43 pages, 1 figure; V3: small corrections and clarifications,
references adde
Real-time fermions for baryogenesis simulations
We study how to numerically simulate quantum fermions out of thermal equilibrium, in the context of electroweak baryogenesis. We find that by combining the lattice implementation of Aarts and Smit [1] with the "low cost" fermions of Borsanyi and Hindmarsh [2], we are able to describe the dynamics of a classical bosonic system coupled to quantum fermions, that correctly reproduces anomalous baryon number violation. To demonstrate the method, we apply it to the 1+1 dimensional axial U(1) model, and perform simulations of a fast symmetry breaking transition. Compared to solving all the quantum mode equations as in [1], we find that this statistical approach may lead to a significant gain in computational time, when applied to 3+1 dimensional physics
- âŠ