43 research outputs found

    Fungal infestation boosts fruit aroma and fruit removal by mammals and birds

    Get PDF
    For four decades, an influential hypothesis has posited that competition for food resources between microbes and vertebrates selects for microbes to alter these resources in ways that make them unpalatable to vertebrates. We chose an understudied cross kingdom interaction to experimentally evaluate the effect of fruit infection by fungi on both vertebrate (mammals and birds) fruit preferences and on ecologically relevant fruit traits (volatile compounds, toughness, etc). Our well-replicated field experiments revealed that, in contrast to previous studies, frugivorous mammals and birds consistently preferred infested over intact fruits. This was concordant with the higher level of attractive volatiles (esters, ethanol) in infested fruits. This investigation suggests that vertebrate frugivores, fleshyfruited plants, and microbes form a tripartite interaction in which each part could interact positively with the other two (e.g. both orange seeds and fungal spores are likely dispersed by mammals). Such a mutualistic view of these complex interactions is opposed to the generalized idea of competition between frugivorous vertebrates and microorganisms. Thus, this research provides a new perspective on the widely accepted plant evolutionary dilemma to make fruits attractive to mutualistic frugivores while unattractive to presumed antagonistic microbes that constrain seed dispersalinfo:eu-repo/semantics/publishedVersio

    Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots

    Get PDF
    A microarray carrying 5,648 probes of Medicago truncatula root-expressed genes was screened in order to identify those that are specifically regulated by the arbuscular mycorrhizal (AM) fungus Gigaspora rosea, by Pi fertilisation or by the phytohormones abscisic acid and jasmonic acid. Amongst the identified genes, 21% showed a common induction and 31% a common repression between roots fertilised with Pi or inoculated with the AM fungus G. rosea, while there was no obvious overlap in the expression patterns between mycorrhizal and phytohormone-treated roots. Expression patterns were further studied by comparing the results with published data obtained from roots colonised by the AM fungi Glomus mosseae and Glomus intraradices, but only very few genes were identified as being commonly regulated by all three AM fungi. Analysis of Pi concentrations in plants colonised by either of the three AM fungi revealed that this could be due to the higher Pi levels in plants inoculated by G. rosea compared with the other two fungi, explaining that numerous genes are commonly regulated by the interaction with G. rosea and by phosphate. Differential gene expression in roots inoculated with the three AM fungi was further studied by expression analyses of six genes from the phosphate transporter gene family in M. truncatula. While MtPT4 was induced by all three fungi, the other five genes showed different degrees of repression mirroring the functional differences in phosphate nutrition by G. rosea, G. mosseae and G. intraradices

    Flooding Greatly Affects the Diversity of Arbuscular Mycorrhizal Fungi Communities in the Roots of Wetland Plants

    Get PDF
    The communities of arbuscular mycorrhizal fungi (AMF) colonizing the roots of three mangrove species were characterized along a tidal gradient in a mangrove swamp. A fragment, designated SSU-ITS-LSU, including part of the small subunit (SSU), the entire internal transcribed spacer (ITS) and part of the large subunit (LSU) of rDNA from samples of AMF-colonized roots was amplified, cloned and sequenced using AMF-specific primers. Similar levels of AMF diversity to those observed in terrestrial ecosystems were detected in the roots, indicating that the communities of AMF in wetland ecosystems are not necessarily low in diversity. In total, 761 Glomeromycota sequences were obtained, which grouped, according to phylogenetic analysis using the SSU-ITS-LSU fragment, into 23 phylotypes, 22 of which belonged to Glomeraceae and one to Acaulosporaceae. The results indicate that flooding plays an important role in AMF diversity, and its effects appear to depend on the degree (duration) of flooding. Both host species and tide level affected community structure of AMF, indicating the presence of habitat and host species preferences
    corecore