499 research outputs found

    Quasiparticles and order parameter near quantum phase transition in heavy fermion metals

    Full text link
    It is shown that the Landau paradigm based upon both the quasiparticle concept and the notion of the order parameter is valid and can be used to explain the anomalous behavior of the heavy fermion metals near quantum critical points. The understanding of this phenomenon has been problematic largely because of the absence of theoretical guidance. Exploiting this paradigm and the fermion condensation quantum phase transition, we investigate the anomalous behavior of the heavy electron liquid near its critical point at different temperatures and applied magnetic fields. We show that this anomalous behavior is universal and can be used to capture the essential aspects of recent experiments on heavy-fermion metals at low temperatures.Comment: 14 pages, revised and accepted by Physics Letters

    How open charm production and scaling violations probe the rightmost hard BFKL pole exchange

    Full text link
    In 1994 Zakharov and the present authors argued that in color dipole (CD) BFKL approach to DIS excitation of open charm at moderately large Q2 is dominated by hard BFKL exchange. In view of the rapid accumulation of the experimental data on small-x charm structure function of the proton F2cc from HERA, we subject the issue of dominance of the rightmost hard BFKL pole exchange to further scrutiny. Based on CD BFKL-Regge factorization we report parameter-free predictions for the charm structure function F2cc and show that the background to the dominant rightmost hard BFKL exchange from subleading hard BFKL and soft-pomeron exchanges is negligible small from real photo-production to DIS at Q2 lsim 50-100 GeV2. The agreement with the experiment is good and lends strong support for the intercept of the rightmost hard BFKL pole DeltaPom=alphaPom-1=0.4 as found in 1994 in the color dipole approach. We comment on the related determination of DeltaPom from the x-dependence of the longitudinal structure function FL(x,Q2) and of the scaling violation dF2/dlog Q2 taken at a suitable value of Q2. \Comment: 16 pages, 7 figures; a discussion of thge longitudinal structure function and scaling violations is adde

    Energy scales and magnetoresistance at a quantum critical point

    Full text link
    The magnetoresistance (MR) of CeCoIn_5 is notably different from that in many conventional metals. We show that a pronounced crossover from negative to positive MR at elevated temperatures and fixed magnetic fields is determined by the scaling behavior of quasiparticle effective mass. At a quantum critical point (QCP) this dependence generates kinks (crossover points from fast to slow growth) in thermodynamic characteristics (like specific heat, magnetization etc) at some temperatures when a strongly correlated electron system transits from the magnetic field induced Landau Fermi liquid (LFL) regime to the non-Fermi liquid (NFL) one taking place at rising temperatures. We show that the above kink-like peculiarity separates two distinct energy scales in QCP vicinity - low temperature LFL scale and high temperature one related to NFL regime. Our comprehensive theoretical analysis of experimental data permits to reveal for the first time new MR and kinks scaling behavior as well as to identify the physical reasons for above energy scales.Comment: 7 pages, 6 figure

    Behavior of the antiferromagnetic phase transition near the fermion condensation quantum phase transition in YbRh2Si2

    Full text link
    Low-temperature specific-heat measurements on YbRh2Si2 at the second order antiferromagnetic (AF) phase transition reveal a sharp peak at T_N=72 mK. The corresponding critical exponent alpha turns out to be alpha=0.38, which differs significantly from that obtained within the framework of the fluctuation theory of second order phase transitions based on the scale invariance, where alpha=0.1. We show that under the application of magnetic field the curve of the second order AF phase transitions passes into a curve of the first order ones at the tricritical point leading to a violation of the critical universality of the fluctuation theory. This change of the phase transition is generated by the fermion condensation quantum phase transition. Near the tricritical point the Landau theory of second order phase transitions is applicable and gives alpha=1/2. We demonstrate that this value of alpha is in good agreement with the specific-heat measurements.Comment: 7 pages, 6 figures. to be published in Phys. Letters

    Spectroscopic Factors in 40^{40}Ca and 208^{208}Pb from (e,ep)(e,e'p): Fully Relativistic Analysis

    Full text link
    We present results for spectroscopic factors of the outermost shells in 40^{40}Ca and 208^{208}Pb, which have been derived from the comparison between the available quasielastic (e,epe,e'p) data from NIKHEF-K and the corresponding calculated cross-sections obtained within a fully relativistic formalism. We include exactly the effect of Coulomb distortion on the electron wave functions and discuss its role in the extraction of the spectroscopic factors from experiment. Without any adjustable parameter, we find spectroscopic factors of about 70\%, consistent with theoretical predictions. We compare our results with previous relativistic and nonrelativistic analyses of (e,epe,e'p) data. In addition to Coulomb distortion effects we discuss different choices of the nucleon current operator and also analyze the effects due to the relativistic treatment of the outgoing-distorted and bound nucleon wave functions.Comment: 9 pages RevTeX, 5 figures can be obtained from the author

    Equation of state and magnetic susceptibility of spin polarized isospin asymmetric nuclear matter

    Get PDF
    Properties of spin polarized isospin asymmetric nuclear matter are studied within the framework of the Brueckner--Hartree--Fock formalism. The single-particle potentials of neutrons and protons with spin up and down are determined for several values of the neutron and proton spin polarizations and the asymmetry parameter. It is found an almost linear and symmetric variation of the single-particle potentials as increasing these parameters. An analytic parametrization of the total energy per particle as a function of the asymmetry and spin polarizations is constructed. This parametrization is employed to compute the magnetic susceptibility of nuclear matter for several values of the asymmetry from neutron to symmetric matter. The results show no indication of a ferromagnetic transition at any density for any asymmetry of nuclear matter.Comment: 23 pages, 8 figures, 2 tables (submitted to Phys. Rev. C

    Quenching of Weak Interactions in Nucleon Matter

    Full text link
    We have calculated the one-body Fermi and Gamow-Teller charge-current, and vector and axial-vector neutral-current nuclear matrix elements in nucleon matter at densities of 0.08, 0.16 and 0.24 fm3^{-3} and proton fractions ranging from 0.2 to 0.5. The correlated states for nucleon matter are obtained by operating on Fermi-gas states by a symmetrized product of pair correlation operators determined from variational calculations with the Argonne v18 and Urbana IX two- and three-nucleon interactions. The squares of the charge current matrix elements are found to be quenched by 20 to 25 % by the short-range correlations in nucleon matter. Most of the quenching is due to spin-isospin correlations induced by the pion exchange interactions which change the isospins and spins of the nucleons. A large part of it can be related to the probability for a spin up proton quasi-particle to be a bare spin up/down proton/neutron. We also calculate the matrix elements of the nuclear Hamiltonian in the same correlated basis. These provide relatively mild effective interactions which give the variational energies in the Hartree-Fock approximation. The calculated two-nucleon effective interaction describes the spin-isospin susceptibilities of nuclear and neutron matter fairly accurately. However \geq 3-body terms are necessary to reproduce the compressibility. All presented results use the simple 2-body cluster approximation to calculate the correlated basis matrix elements.Comment: submitted to PR

    Path Integral Variational Methods for Strongly Correlated Systems

    Get PDF
    We introduce a new approach to highly correlated systems which generalizes the Fermi Hypernetted Chain and Correlated Basis Function techniques. While the latter approaches can only be applied to systems for which a nonrelativistic wave function can be defined, the new approach is based on the variation of a trial hamiltonian within a path integral framework and thus can also be applied to relativistic and field theoretical problems. We derive a diagrammatic scheme for the new approach and show how a particular choice of the trial hamiltonian corresponds exactly to the use of a Jastrow correlated ansatz for the wave function in the Fermi Hypernetted Chain approach. We show how our new approach can be used to find upper bounds to ground state energies in systems which the FHNC cannot handle, including those described by an energy-dependent effective hamiltonian. We demonstrate our approach by applying it to a quantum field theoretical system of interacting pions and nucleons.Comment: 35 RevTeX pages, 7 separated ps figures available on reques

    Fermion Condensation Quantum Phase Transition versus Conventional Quantum Phase Transitions

    Full text link
    The main features of fermion condensation quantum phase transition (FCQPT), which are distinctive in several aspects from that of conventional quantum phase transition (CQPT), are considered. We show that in contrast to CQPT, whose physics in quantum critical region is dominated by thermal and quantum fluctuations and characterized by the absence of quasiparticles, the physics of a Fermi system near FCQPT or undergone FCQPT is controlled by the system of quasiparticles resembling the Landau quasiparticles. Contrary to the Landau quasiparticles, the effective mass of these quasiparticles strongly depends on the temperature, magnetic fields, density, etc. This system of quasiparticles having general properties determines the universal behavior of the Fermi system in question. As a result, the universal behavior persists up to relatively high temperatures comparatively to the case when such a behavior is determined by CQPT. We analyze striking recent measurements of specific heat, charge and heat transport used to study the nature of magnetic field-induced QCP in heavy-fermion metal CeCoIn5_5 and show that the observed facts are in good agreement with our scenario based on FCQPT and certainly seem to rule out the critical fluctuations related with CQPT. Our general consideration suggests that FCQPT and the emergence of novel quasiparticles near and behind FCQPT and resembling the Landau quasiparticles are distinctive features intrinsic to strongly correlated substances.Comment: 10 pages, Revtex, new references and facts are adde

    Clinical delineation and natural history of the PIK3CA-related overgrowth spectrum.

    Get PDF
    Somatic mutations in the phosphatidylinositol/AKT/mTOR pathway cause segmental overgrowth disorders. Diagnostic descriptors associated with PIK3CA mutations include fibroadipose overgrowth (FAO), Hemihyperplasia multiple Lipomatosis (HHML), Congenital Lipomatous Overgrowth, Vascular malformations, Epidermal nevi, Scoliosis/skeletal and spinal (CLOVES) syndrome, macrodactyly, and the megalencephaly syndrome, Megalencephaly-Capillary malformation (MCAP) syndrome. We set out to refine the understanding of the clinical spectrum and natural history of these phenotypes, and now describe 35 patients with segmental overgrowth and somatic PIK3CA mutations. The phenotypic data show that these previously described disease entities have considerable overlap, and represent a spectrum. While this spectrum overlaps with Proteus syndrome (sporadic, mosaic, and progressive) it can be distinguished by the absence of cerebriform connective tissue nevi and a distinct natural history. Vascular malformations were found in 15/35 (43%) and epidermal nevi in 4/35 (11%) patients, lower than in Proteus syndrome. Unlike Proteus syndrome, 31/35 (89%) patients with PIK3CA mutations had congenital overgrowth, and in 35/35 patients this was asymmetric and disproportionate. Overgrowth was mild with little postnatal progression in most, while in others it was severe and progressive requiring multiple surgeries. Novel findings include: adipose dysregulation present in all patients, unilateral overgrowth that is predominantly left-sided, overgrowth that affects the lower extremities more than the upper extremities and progresses in a distal to proximal pattern, and in the most severely affected patients is associated with marked paucity of adipose tissue in unaffected areas. While the current data are consistent with some genotype-phenotype correlation, this cannot yet be confirmed
    corecore