37 research outputs found

    Photocatalytic Properties of Sn-doped TiO2

    Get PDF
    The synthesis of Sn-doped titania nanoparticles (Sn content of 0, 3, 6, and 12 at. %) was carried out using solgel chemical route based on the common acid hydrolysis of titanium and tin tetrachlorides. Phase composition, morphology, particle size, pore size distribution and photocatalytic performance of obtained materials were systematically studied by various analytical techniques (XRD, HR-TEM, low-temperature nitrogen adsorption porosimetry, UV-Vis spectroscopy). An increase in the Sn dopant concentration causes a gradual decrease in the relative content of the anatase phase from 100 mol. % for undoped titania to about 3 mol. % for material with maximal doping concentration. Materials with a Sn atomic content of 3 and 6 at. % have the maximum values of the specific surface area (about 280-290 m2/g) that corresponds to the smallest (approximately 2.5 nm) anatase crystallite. The photocatalytic activity of the synthesized Sn-doped TiO2 nanoparticles was analyzed by the method of methylene blue dye photodegradation in an aqueous solution under UV irradiation. The highest reaction rate constant and maximal methylene blue dye adsorption capacity were obtained for 3 at. % Sn-doped titania with the mixed anatase/rutile composition. The indirect optical transitions are characteristic for all synthesized materials. A decrease in the bandgap energy values with increasing Sn content from 3.21 eV for pure anatase to 2.82 eV for titania doped with 12 at. % of the Sn was observed. The growth in photocatalytic activity for the mixed-phase sample can be considered as a result of the increasing number of surface active centers due to the anatase-rutile phase transition

    Π“Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½Π΅ Ρ‚Π° ΠΌΠ΅Ρ…Π°Π½ΠΎ-сорбційнС модифікування високодиспСрсного ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΡƒ Π² ΡƒΠΌΠΎΠ²Π°Ρ… Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ диспСрсійного сСрСдовища

    Get PDF
    Methods of geometric and solvate-stymulated mechano-sorption-activated modification of fumed nanosilica in the gaseous dispersion media were developed and used to prepare functionalyzed nanofillers for polymeric systems. Non-volatile high- and low-molecular weight compounds (such as polymers, organic bioactive compounds, organic and inorganic salts) can be used as modifiers of nanofillers.Π‘ΡƒΠ»ΠΈ описані Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½Π΅ Ρ‚Π° ΡΠΎΠ»ΡŒΠ²Π°Ρ‚ΠΎ-ΡΡ‚ΠΈΠΌΡƒΠ»ΡŒΠΎΠ²Π°Π½Π΅ мСханосорбційнС модифікування високодиспСрсного ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΡƒ Π² ΡƒΠΌΠΎΠ²Π°Ρ… Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ диспСрсійного сСрСдовища. Π’Π°ΠΊΡ– способи модифікування Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ΡŒ ΠΎΠ΄Π΅Ρ€ΠΆΡƒΠ²Π°Ρ‚ΠΈ Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»Ρ–Π·ΠΎΠ²Π°Π½Ρ– Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡Ρ– ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… систСм Π½Π° основі Π½Π°Π½ΠΎΡ€ΠΎΠ·ΠΌΡ–Ρ€Π½ΠΎΠ³ΠΎ ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΡƒ. Для модифікування ΠΌΠΎΠΆΠ½Π° використовувати Π½Π΅Π»Π΅Ρ‚ΠΊΡ– високо- Ρ‚Π° Π½ΠΈΠ·ΡŒΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ– ΠΎΡ€Π³Π°Π½Ρ–Ρ‡Π½Ρ– сполуки – ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ΠΈ, Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ– сполуки, ΠΎΡ€Π³Π°Π½Ρ–Ρ‡Π½Ρ– солі, Π° Ρ‚Π°ΠΊΠΎΠΆ Π½Π΅ΠΎΡ€Π³Π°Π½Ρ–Ρ‡Π½Ρ– солі

    Interaction of Red Blood Cells with Fumed SiO2, Al2O3/SiO2 and TiO2/SiO2 by Light Scattering Measurements

    Get PDF
    The interaction of human red blood cells (RBCs) with fumed silica and fumed X/SiO2 (X = Al2O3, TiO2) at different concentrations of X oxide was studied by flow cytometry and photon correlation spectroscopy. The light scattering of RBCs affected by oxides in conjunction with the hemolysis degree showed that mixed oxides (X/SiO2), in general, had less membranotoxic effect than pure silica. The interaction of RBCs with fumed silica and other mixed oxides is a convenient model to examine membranotoxicity and biocompatibility of disperse materials. Flow cytometry and photon correlation spectroscopy are informative methods to study the mechanism of hemolysis induced by solid micro- or nanoparticles.ΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΡ— Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€Ρ–Ρ— Ρ‚Π° Π»Π°Π·Π΅Ρ€Π½ΠΎΡ— корСляційної спСктроскопії дослідТСно Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–ΡŽ Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΡ†ΠΈΡ‚Ρ–Π² людини Π· ΠΏΡ–Ρ€ΠΎΠ³Π΅Π½Π½ΠΈΠΌΠΈ оксидами – Π½Π΅ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΠΌ ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠΎΠΌ Ρ– Π·ΠΌΡ–ΡˆΠ°Π½ΠΈΠΌΠΈ оксидами X/SiO2 (X = Al2O3, TiO2) Π· Ρ€Ρ–Π·Π½ΠΈΠΌ вмістом X. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½Π½Ρ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² ΡΠ²Ρ–Ρ‚Π»ΠΎΡ€ΠΎΠ·ΡΡ–ΡŽΠ²Π°Π½Π½Ρ Ρƒ ΠΏΠΎΡ”Π΄Π½Π°Π½Π½Ρ– Π· визначСнням ступСня Π³Π΅ΠΌΠΎΠ»Ρ–Π·Ρƒ Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΡ†ΠΈΡ‚Ρ–Π² ΡΠ²Ρ–Π΄Ρ‡Π°Ρ‚ΡŒ, Ρ‰ΠΎ Π·ΠΌΡ–ΡˆΠ°Π½Ρ– оксиди Π² Ρ†Ρ–Π»ΠΎΠΌΡƒ ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ΡŒ ΠΌΠ΅Π½ΡˆΡƒ мСмбранотоксичну Π΄Ρ–ΡŽ Ρƒ порівнянні Π· Π½Π΅ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΠΌ ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠΎΠΌ. Взаємодія Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΡ†ΠΈΡ‚Ρ–Π² людини Π· ΠΏΡ–Ρ€ΠΎΠ³Π΅Π½Π½ΠΈΠΌ ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠΎΠΌ Ρ‚Π° Ρ–Π½ΡˆΠΈΠΌΠΈ Π·ΠΌΡ–ΡˆΠ°Π½ΠΈΠΌΠΈ оксидами Ρ” Π·Ρ€ΡƒΡ‡Π½ΠΎΡŽ модСллю для тСстування мСмбранотоксичності/біосумісності диспСрсних ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π². ΠŸΡ€ΠΎΡ‚ΠΎΡ‡Π½Π° цитомСтрія Ρ– Π»Π°Π·Π΅Ρ€Π½Π° корСляційна спСктроскопія Ρ” Ρ–Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΈΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ для вивчСння ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΡƒ Π³Π΅ΠΌΠΎΠ»Ρ–Π·Ρƒ, Ρ–Π½Π΄ΡƒΠΊΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Ρ‚Π²Π΅Ρ€Π΄ΠΈΠΌΠΈ частинками.ΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΈ Π»Π°Π·Π΅Ρ€Π½ΠΎΠΉ коррСляционной спСктроскопии ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΎ взаимодСйствиС эритроцитов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° с ΠΏΠΈΡ€ΠΎΠ³Π΅Π½Π½Ρ‹ΠΌΠΈ оксидами – Π½Π΅ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠΎΠΌ ΠΈ ΡΠΌΠ΅ΡˆΠ°Π½Ρ‹ΠΌΠΈ оксидами X/SiO2 (X = Al2O3, TiO2) с Ρ€Π°Π·Π½Ρ‹ΠΌ содСрТаниСм X. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ измСрСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² свСторассСяния совмСстно с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ стСпСни Π³Π΅ΠΌΠΎΠ»ΠΈΠ·Π° эритроцитов ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚, Ρ‡Ρ‚ΠΎ ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹Π΅ оксиды Π² Ρ†Π΅Π»ΠΎΠΌ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ мСньшим мСмбранотоксичСским дСйствиСм Π² сравнСнии с Π½Π΅ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠΎΠΌ. ВзаимодСйствиС эритроцитов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° с ΠΏΠΈΡ€ΠΎΠ³Π΅Π½Π½Ρ‹ΠΌ ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠΎΠΌ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ ΡΠΌΠ΅ΡˆΠ°Π½Ρ‹ΠΌΠΈ оксидами ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ ΡƒΠ΄ΠΎΠ±Π½ΡƒΡŽ модСль для испытания диспСрсных ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π½Π° ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ΠΎΡ‚ΠΎΠΊΡΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ/ Π±ΠΈΠΎΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΠΌΠΎΡΡ‚ΡŒ. ΠŸΡ€ΠΎΡ‚ΠΎΡ‡Π½Π°Ρ цитомСтрия ΠΈ лазСрная коррСляционная спСктроскопия ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ для изучСния ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π³Π΅ΠΌΠΎΠ»ΠΈΠ·Π°, ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Ρ‚Π²Π΅Ρ€Π΄Ρ‹ΠΌΠΈ частицами

    Influence of Solution pH on Stability of Fumed Silica–Polyacrylic Acid Systems

    Get PDF
    The influence of polyacrlic acid (PAA) adsorption on fumed silica (SiO2) surface on suspension stability has been studied. Π‘hanges in the suspension stability were monitored using a Turbiscan LabExpert with a TLAb Cooler cooling module at 25oC. PAA is an anionic polymer containing carboxyl groups; therefore all the measurements were carried out at different pH 3, 6 and 9. Analysis of obtained transmission and backscattering curves and Turbiscan Stability Indexes (TSI) allowed determination of the most probable mechanism of the system stability.Π’ΠΈΠ²Ρ‡Π΅Π½ΠΎ Π²ΠΏΠ»ΠΈΠ² адсорбції ΠΏΠΎΠ»Ρ–Π°ΠΊΡ€ΠΈΠ»ΠΎΠ²ΠΎΡ— кислоти (ПAК) Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– високодиспСрсного ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΡƒ (SiO2) Π½Π° ΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½Ρ–ΡΡ‚ΡŒ суспСнзії. Π—ΠΌΡ–Π½ΠΈ ΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½ΠΎΡΡ‚Ρ– суспСнзії ΡΠΏΠΎΡΡ‚Π΅Ρ€Ρ–Π³Π°Π»ΠΈΡΡŒ Π·Π° допомогою ΠΏΡ€ΠΈΠ»Π°Π΄Ρƒ Turbiscan LabExpert Ρ–Π· ΠΎΡ…ΠΎΠ»ΠΎΠ΄ΠΆΡƒΡŽΡ‡ΠΈΠΌ ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΌ TLAb Cooler ΠΏΡ€ΠΈ 25oC. ПAК Ρ” Π°Π½Ρ–ΠΎΠ½Π½ΠΈΠΌ ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ΠΎΠΌ, Ρ‰ΠΎ ΠΌΡ–ΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ°Ρ€Π±ΠΎΠΊΡΠΈΠ»ΡŒΠ½Ρ– Π³Ρ€ΡƒΠΏΠΈ, Ρ‚ΠΎΠΌΡƒ всі Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½Π½Ρ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ ΠΏΡ€ΠΈ Ρ€Ρ–Π·Π½ΠΈΡ… рН (3, 6 Ρ‚Π° 9). Аналіз ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡ… ΠΊΡ€ΠΈΠ²ΠΈΡ… пСрСнСсСння Ρ‚Π° Π·Π²ΠΎΡ€ΠΎΡ‚Π½ΡŒΠΎΠ³ΠΎ розсіяння, Π° Ρ‚Π°ΠΊΠΎΠΆ індСксів ΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½ΠΎΡΡ‚Ρ– (Turbiscan Stability Indexes (TSI)) Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ² Π²ΠΈΠ·Π½Π°Ρ‡ΠΈΡ‚ΠΈ Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆ Π²Ρ–Ρ€ΠΎΠ³Ρ–Π΄Π½ΠΈΠΉ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌ стабілізації Π²ΠΈΠ²Ρ‡Π΅Π½ΠΈΡ… систСм.Π˜Π·ΡƒΡ‡Π΅Π½ΠΎ влияниС адсорбции ΠΏΠΎΠ»ΠΈΠ°ΠΊΡ€ΠΈΠ»ΠΎΠ²ΠΎΠΉ кислоты (ПAA) Π½Π° повСрхности высокодиспСрсного ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ° (SiO2) Π½Π° ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ суспСнзии. ИзмСнСния ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ суспСнзии наблюдались с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π° Turbiscan LabExpert с ΠΎΡ…Π»Π°ΠΆΠ΄Π°ΡŽΡ‰ΠΈΠΌ ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΌ TLAb Cooler ΠΏΡ€ΠΈ 25oC. PAA являСтся Π°Π½ΠΈΠΎΠ½Π½Ρ‹ΠΌ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠΌ, содСрТащим ΠΊΠ°Ρ€Π±ΠΎΠΊΡΠΈΠ»ΡŒΠ½Ρ‹Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹, поэтому всС измСрСния ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… рН (3, 6 ΠΈ 9). Анализ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΊΡ€ΠΈΠ²Ρ‹Ρ… пСрСноса ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ рассСяния, Π° Ρ‚Π°ΠΊΠΆΠ΅ индСксов ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ (Turbiscan Stability Indexes (TSI)) ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ вСроятный ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ стабилизации ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… систСм

    Water Binding Through Polyacrylamide Hydrogel and the Influence of Its Preliminary Saturation by Enoxil

    No full text

    Role of dipole image forces in molecular adsorption

    No full text
    Electrostatic image force energy W was calculated for a finite-size (extended) dipole located in vacuum near a plane surface of a condensed-matter substrate using the HF molecule over graphite as an example. The spatial dispersion of substrate static dielectric permittivity was taken into account, with the contributions of both free and bound charge carriers being considered in various realistic models. The dependences of W on the distance z between the dipole and the substrate were shown to be finite at all z’s, contrary to the classical point-dipole case. An existence of a crossover between the preferable normal and planar orientations of extended dipole with respect to the surface was found. The applicability of point-dipole approximation for the calculation of W(z) was discussed. Numerical quantum chemical calculations were carried out for the HF molecule near two graphite layers. The results obtained confirm the validity of non-local electrostatic approach beyond the region of Pauli repulsion (in the closest vicinity to the interface). On the other hand, at large distances z, the quantum chemical consideration becomes less reliable owing to the computational restrictions, whereas the electrostatics preserves its capabilities and demonstrates, in particular, the subtle orientation crossover
    corecore