115 research outputs found
Three-body halos. V. Computations of continuum spectra for Borromean nuclei
We solve the coordinate space Faddeev equations in the continuum. We employ
hyperspherical coordinates and provide analytical expressions allowing easy
computation of the effective potentials at distances much larger than the
ranges of the interactions where only s-waves in the different Jacobi
coordinates couple. Realistic computations are carried out for the Borromean
halo nuclei 6He (n+n+\alpha) for J\pi = 0+-, 1+-, 2+- and 11Li (n+n+9Li) for
(1/2)+-, (3/2)+-, (5/2)+-. Ground state properties, strength functions, Coulomb
dissociation cross sections, phase shifts, complex S-matrix poles are computed
and compared to available experimental data. We find enhancements of the
strength functions at low energies and a number of low-lying S-matrix poles.Comment: 35 pages, 14 figure
New data on the ichthyosaur Platypterygius hercynicus and its implications for the validity of the genus
The description of a nearly complete skull from the late Albian of northwestern France
reveals previously unknown anatomical features of Platypterygius hercynicus (Kuhn 1946),
and of European Cretaceous ichthyosaurs in general. These include a wide frontal forming the
anteromedial border of the supratemporal fenestra, a parietal excluded from the parietal
foramen, and the likely presence of a squamosal, inferred from a very large and deep facet on
the quadratojugal. The absence of a squamosal has been considered as an autapomorphy of
the genus Platypterygius for more than ten years and has been applied to all known species by
default, but the described specimen casts doubt on this putative autapomorphy. Actually, it is
shown that all characters that have been proposed previously as autapomorphic for the genus
Platypterygius are either not found in all the species currently referred to this genus, or are
also present in other Ophthalmosauridae. Consequently, the genus Platypterygius must be
completely revised.Peer reviewe
Scattering theory and ground-state energy of Dirac fermions in graphene with two Coulomb impurities
We study the physics of Dirac fermions in a gapped graphene monolayer containing two Coulomb impurities. For the case of equal impurity charges, we discuss the ground-state energy using the linear combination of atomic orbitals (LCAO) approach. For opposite charges of the Coulomb centers, an electric dipole potential results at large distances. We provide a nonperturbative analysis of the corresponding low-energy scattering problem
Relic neutrino masses and the highest energy cosmic rays
We consider the possibility that a large fraction of the ultrahigh energy
cosmic rays are decay products of Z bosons which were produced in the
scattering of ultrahigh energy cosmic neutrinos on cosmological relic
neutrinos. We compare the observed ultrahigh energy cosmic ray spectrum with
the one predicted in the above Z-burst scenario and determine the required mass
of the heaviest relic neutrino as well as the necessary ultrahigh energy cosmic
neutrino flux via a maximum likelihood analysis. We show that the value of the
neutrino mass obtained in this way is fairly robust against variations in
presently unknown quantities, like the amount of neutrino clustering, the
universal radio background, and the extragalactic magnetic field, within their
anticipated uncertainties. Much stronger systematics arises from different
possible assumptions about the diffuse background of ordinary cosmic rays from
unresolved astrophysical sources. In the most plausible case that these
ordinary cosmic rays are protons of extragalactic origin, one is lead to a
required neutrino mass in the range 0.08 eV - 1.3 eV at the 68 % confidence
level. This range narrows down considerably if a particular universal radio
background is assumed, e.g. to 0.08 eV - 0.40 eV for a large one. The required
flux of ultrahigh energy cosmic neutrinos near the resonant energy should be
detected in the near future by AMANDA, RICE, and the Pierre Auger Observatory,
otherwise the Z-burst scenario will be ruled out.Comment: 19 pages, 22 figures, REVTeX
Topological Defects and CMB anisotropies : Are the predictions reliable ?
We consider a network of topological defects which can partly decay into
neutrinos, photons, baryons, or Cold Dark Matter. We find that the degree-scale
amplitude of the cosmic microwave background (CMB) anisotropies as well as the
shape of the matter power spectrum can be considerably modified when such a
decay is taken into account. We conclude that present predictions concerning
structure formation by defects might be unreliable.Comment: 14 pages, accepted for publication in PR
Demonstration of the temporal matter-wave Talbot effect for trapped matter waves
We demonstrate the temporal Talbot effect for trapped matter waves using
ultracold atoms in an optical lattice. We investigate the phase evolution of an
array of essentially non-interacting matter waves and observe matter-wave
collapse and revival in the form of a Talbot interference pattern. By using
long expansion times, we image momentum space with sub-recoil resolution,
allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV
Mid-rapidity transverse mass spectra and multiplicity densities of charged
and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC.
The spectra are exponential in transverse mass, with an inverse slope of about
280 MeV in central collisions. The multiplicity densities for these particles
scale with the negative hadron pseudo-rapidity density. The charged kaon to
pion ratios are and
for the most central collisions. The ratio is lower than the same
ratio observed at the SPS while the is higher than the SPS result.
Both ratios are enhanced by about 50% relative to p+p and +p
collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Azimuthal anisotropy at RHIC: the first and fourth harmonics
We report the first observations of the first harmonic (directed flow, v_1),
and the fourth harmonic (v_4), in the azimuthal distribution of particles with
respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion
Collider (RHIC). Both measurements were done taking advantage of the large
elliptic flow (v_2) generated at RHIC. From the correlation of v_2 with v_1 it
is determined that v_2 is positive, or {\it in-plane}. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 6 pages with 3 figures, as accepted for Phys. Rev. Letters The data
tables are at
http://www.star.bnl.gov/central/publications/pubDetail.php?id=3
Mid-rapidity anti-proton to proton ratio from Au+Au collisions at GeV
We report results on the ratio of mid-rapidity anti-proton to proton yields
in Au+Au collisions at \rts = 130 GeV per nucleon pair as measured by the
STAR experiment at RHIC. Within the rapidity and transverse momentum range of
and 0.4 1.0 GeV/, the ratio is essentially independent of
either transverse momentum or rapidity, with an average of for minimum bias collisions. Within errors, no
strong centrality dependence is observed. The results indicate that at this
RHIC energy, although the -\pb pair production becomes important at
mid-rapidity, a significant excess of baryons over anti-baryons is still
present.Comment: 5 pages, 3 figures, accepted by Phys. Rev. Let
- …