39 research outputs found

    Compensation device of breakaway torque of reaction wheel assembly

    Get PDF
    Статья посвящена разработке устройства компенсации момента трогания в управляющихдвигателях-маховиках. В статье анализируются проблемы, связанные с возникновением явления момента трогания в двигателях. Автором предлагаются пути решения данной проблемы, а так же рассматриваются преимущества и недостатки каждого из них. В результате было предложено устройство, которое позволяет снизить момент трогания управляющих двигателей-маховиков и исключить зону нечувствительности к малым управляющим сигналам, описана его структура и представлен краткий алгоритм работы такого устройства. Оценка результатов была произведена на испытательном стенде, представляющем собой имитационную модель управляющего двигателя-маховика.The article is devoted to the development of compensation device of breakaway torque of reaction wheel assembly. The article analyses the problems associated with the emergence of phenomenon of breakaway torque in reaction wheel assembly. The author suggests ways of solving this problem, as well as discusses the advantages anddisadvantages of each of them. As a result, it was suggested the device which reduces breakaway torque of reaction wheel assembly and exclude the dead zone in range of small signals, described its structure and provides an algorithm for such a device. Evaluation of the results was carried out on a test bench, which represent a simulationmodel of reaction wheel assembly

    Resonant nature of phonon-induced damping of Rabi oscillations in quantum dots

    Full text link
    Optically controlled coherent dynamics of charge (excitonic) degrees of freedom in a semiconductor quantum dot under the influence of lattice dynamics (phonons) is discussed theoretically. We show that the dynamics of the lattice response in the strongly non-linear regime is governed by a semiclassical resonance between the phonon modes and the optically driven dynamics. We stress on the importance of the stability of intermediate states for the truly coherent control.Comment: 4 pages, 2 figures; final version; moderate changes, new titl

    Ultrafast Nonlinear Optical Response of Strongly Correlated Systems: Dynamics in the Quantum Hall Effect Regime

    Full text link
    We present a theoretical formulation of the coherent ultrafast nonlinear optical response of a strongly correlated system and discuss an example where the Coulomb correlations dominate. We separate out the correlated contributions to the third-order nonlinear polarization, and identify non-Markovian dephasing effects coming from the non-instantaneous interactions and propagation in time of the collective excitations of the many-body system. We discuss the signatures, in the time and frequency dependence of the four-wave-mixing (FWM) spectrum, of the inter-Landau level magnetoplasmon (MP) excitations of the two-dimensional electron gas (2DEG) in a perpendicular magnetic field. We predict a resonant enhancement of the lowest Landau level (LL) FWM signal, a strong non-Markovian dephasing of the next LL magnetoexciton (X), a symmetric FWM temporal profile, and strong oscillations as function of time delay, of quantum kinetic origin. We show that the correlation effects can be controlled experimentally by tuning the central frequency of the optical excitation between the two lowest LLs.Comment: 21 pages, 10 figure

    Influence of Coulomb and Phonon Interaction on the Exciton Formation Dynamics in Semiconductor Heterostructures

    Full text link
    A microscopic theory is developed to analyze the dynamics of exciton formation out of incoherent carriers in semiconductor heterostructures. The carrier Coulomb and phonon interaction is included consistently. A cluster expansion method is used to systematically truncate the hierarchy problem. By including all correlations up to the four-point (i.e. two-particle) level, the fundamental fermionic substructure of excitons is fully included. The analysis shows that the exciton formation is an intricate process where Coulomb correlations rapidly build up on a picosecond time scale while phonon dynamics leads to true exciton formation on a slow nanosecond time scale.Comment: 18 pages, 7 figure

    Fermi-edge singularities in linear and non-linear ultrafast spectroscopy

    Get PDF
    We discuss Fermi-edge singularity effects on the linear and nonlinear transient response of an electron gas in a doped semiconductor. We use a bosonization scheme to describe the low energy excitations, which allows to compute the time and temperature dependence of the response functions. Coherent control of the energy absorption at resonance is analyzed in the linear regime. It is shown that a phase-shift appears in the coherent control oscillations, which is not present in the excitonic case. The nonlinear response is calculated analytically and used to predict that four wave-mixing experiments would present a Fermi-edge singularity when the exciting energy is varied. A new dephasing mechanism is predicted in doped samples that depends linearly on temperature and is produced by the low-energy bosonic excitations in the conduction band.Comment: long version; 9 pages, 4 figure

    Polariton propagation in weak confinement quantum wells

    Full text link
    Exciton-polariton propagation in a quantum well, under centre-of-mass quantization, is computed by a variational self-consistent microscopic theory. The Wannier exciton envelope functions basis set is given by the simple analytical model of ref. [1], based on pure states of the centre-of-mass wave vector, free from fitting parameters and "ad hoc" (the so called additional boundary conditions-ABCs) assumptions. In the present paper, the former analytical model is implemented in order to reproduce the centre-of-mass quantization in a large range of quantum well thicknesses (5a_B < L < inf.). The role of the dynamical transition layer at the well/barrier interfaces is discussed at variance of the classical Pekar's dead-layer and ABCs. The Wannier exciton eigenstates are computed, and compared with various theoretical models with different degrees of accuracy. Exciton-polariton transmission spectra in large quantum wells (L>> a_B) are computed and compared with experimental results of Schneider et al.\cite{Schneider} in high quality GaAs samples. The sound agreement between theory and experiment allows to unambiguously assign the exciton-polariton dips of the transmission spectrum to the pure states of the Wannier exciton center-of-mass quantization.Comment: 15 pages, 15 figures; will appear in Phys.Rev.

    Coupled free-carrier and exciton relaxation in optically excited semiconductors

    Get PDF
    The energy relaxation of coupled free-carrier and exciton populations in semiconductors after low-density ultrafast optical excitation is studied through a kinetic approach. The set of semiclassical Boltzmann equations, usually written for electron and hole populations only, is complemented by an additional equation for the exciton distribution. The equations are coupled by reaction terms describing phonon-mediated exciton binding and dissociation. All the other relevant scattering mechanisms, such as carrier-carrier, carrier-phonon, and exciton-phonon interactions, are also included. The resulting system of rate equations in reciprocal space is solved by an extended ensemble Monte Carlo method. As a first application, we show results for the dynamics of bulk GaAs in the range from 1 to ∼200 ps after photoexcitation. The build-up of an exciton population and its sensitivity to the excitation conditions are discussed in detail. As a consequence of the pronounced energy dependence of the LO-phonon-assisted transition probabilities between free-pair states and excitons, it is found that the efficiency of the exciton-formation process and the temporal evolution of the resulting population are sensitive to the excitation energy. We discuss the effects on luminescence experiments

    Distinctive characteristics of carrier-phonon interactions in optically driven semiconductor quantum dots

    Full text link
    We review distinct features arising from the unique nature of the carrier-phonon coupling in self-assembled semiconductor quantum dots. Because of the discrete electronic energy structure, the pure dephasing coupling usually dominates the phonon effects, of which two properties are of key importance: The resonant nature of the dot-phonon coupling, i.e. its non-monotonic behavior as a function of energy, and the fact that it is of super-Ohmic type. Phonons do not only act destructively in quantum dots by introducing dephasing, they also offer new opportunities, e.g. in state preparation protocols. Apart from being an interesting model systems for studying fundamental physical aspects, quantum dot and quantum dot-microcavity systems are a hotspot for many innovative applications. We discuss recent developments related to the decisive impact of phonons on key figures of merit of photonic devices like single or entangled photon sources under aspects like indistinguishability, purity and brightness. All in all it follows that understanding and controlling the carrier-phonon interaction in semiconductor quantum dots is vital for their usage in quantum information technology
    corecore