922 research outputs found

    The PMS project: Poor Man's Supercomputer

    Get PDF
    We briefly describe the Poor Man's Supercomputer (PMS) project carried out at Eotvos University, Budapest. The goal was to develop a cost effective, scalable, fast parallel computer to perform numerical calculations of physical problems that can be implemented on a lattice with nearest neighbour interactions. To this end we developed the PMS architecture using PC components and designed a special, low cost communication hardware and the driver software for Linux OS. Our first implementation of PMS includes 32 nodes (PMS1). The performance of PMS1 was tested by Lattice Gauge Theory simulations. Using SU(3) pure gauge theory or bosonic MSSM on PMS1 we obtained 3/Mflopand0.45/Mflop and 0.45Mflop price-to-sustained performance for double and single precision operations, respectively. The design of the special hardware and the communication driver are freely available upon request for non-profit organizations.Comment: Latex, 13 pages, 6 figures included, minor additions, typos correcte

    DD-dimensions Dirac fermions BEC-BCS cross-over thermodynamics

    Full text link
    An effective Proca Lagrangian action is used to address the vector condensation Lorentz violation effects on the equation of state of the strongly interacting fermions system. The interior quantum fluctuation effects are incorporated as an external field approximation indirectly through a fictive generalized Thomson Problem counterterm background. The general analytical formulas for the dd-dimensions thermodynamics are given near the unitary limit region. In the non-relativistic limit for d=3d=3, the universal dimensionless coefficient ξ=4/9\xi ={4}/{9} and energy gap Δ/ϵf=5/18\Delta/\epsilon_f ={5}/{18} are reasonably consistent with the existed theoretical and experimental results. In the unitary limit for d=2d=2 and T=0, the universal coefficient can even approach the extreme occasion ξ=0\xi=0 corresponding to the infinite effective fermion mass m=m^*=\infty which can be mapped to the strongly coupled two-dimensions electrons and is quite similar to the three-dimensions Bose-Einstein Condensation of ideal boson gas. Instead, for d=1d=1, the universal coefficient ξ\xi is negative, implying the non-existence of phase transition from superfluidity to normal state. The solutions manifest the quantum Ising universal class characteristic of the strongly coupled unitary fermions gas.Comment: Improved versio

    Multi-layered Ruthenium-modified Bond Coats for Thermal Barrier Coatings

    Get PDF
    Diffusional approaches for fabrication of multi-layered Ru-modified bond coats for thermal barrier coatings have been developed via low activity chemical vapor deposition and high activity pack aluminization. Both processes yield bond coats comprising two distinct B2 layers, based on NiAl and RuAl, however, the position of these layers relative to the bond coat surface is reversed when switching processes. The structural evolution of each coating at various stages of the fabrication process has been and subsequent cyclic oxidation is presented, and the relevant interdiffusion and phase equilibria issues in are discussed. Evaluation of the oxidation behavior of these Ru-modified bond coat structures reveals that each B2 interlayer arrangement leads to the formation of α-Al 2 O 3 TGO at 1100°C, but the durability of the TGO is somewhat different and in need of further improvement in both cases

    Renormalization group and isochronous oscillations

    Full text link
    We show how the condition of isochronicity can be studied for two dimensional systems in the renormalization group (RG) context. We find a necessary condition for the isochronicity of the Cherkas and another class of cubic systems. Our conditions are satisfied by all the cases studied recently by Bardet et al \cite{bard} and Ghose Choudhury and Guh

    F-theory Yukawa Couplings and Supersymmetric Quantum Mechanics

    Full text link
    The localized fermions on the intersection curve Σ\Sigma of D7-branes, are connected to a N=2 supersymmetric quantum mechanics algebra. Due to this algebra the fields obey a global U(1) symmetry. This symmetry restricts the proton decay operators and the neutrino mass terms. Particularly, we find that several proton decay operators are forbidden and the Majorana mass term is the only one allowed in the theory. A special SUSY QM algebra is studied at the end of the paper. In addition we study the impact of a non-trivial holomorphic metric perturbation on the localized solutions along each matter curve. Moreover, we study the connection of the localized solutions to an N=2 supersymmetric quantum mechanics algebra when background fluxes are turned on.Comment: References added, New Material Added, Published versio

    Hydrodynamics of domain growth in nematic liquid crystals

    Full text link
    We study the growth of aligned domains in nematic liquid crystals. Results are obtained solving the Beris-Edwards equations of motion using the lattice Boltzmann approach. Spatial anisotropy in the domain growth is shown to be a consequence of the flow induced by the changing order parameter field (backflow). The generalization of the results to the growth of a cylindrical domain, which involves the dynamics of a defect ring, is discussed.Comment: 12 revtex-style pages, including 12 figures; small changes before publicatio

    Comparison of Radiation Damage in Lead Tungstate Crystals under Pion and Gamma Irradiation

    Full text link
    Studies of the radiation hardness of lead tungstate crystals produced by the Bogoroditsk Techno-Chemical Plant in Russia and the Shanghai Institute of Ceramics in China have been carried out at IHEP, Protvino. The crystals were irradiated by a 40-GeV pion beam. After full recovery, the same crystals were irradiated using a 137Cs^{137}Cs γ\gamma-ray source. The dose rate profiles along the crystal length were observed to be quite similar. We compare the effects of the two types of radiation on the crystals light output.Comment: 10 pages, 8 figures, Latex 2e, 28.04.04 - minor grammatical change

    LED Monitoring System for the BTeV Lead Tungstate Crystal Calorimeter Prototype

    Full text link
    We report on the performance of a monitoring system for a prototype calorimeter for the BTeV experiment that uses Lead Tungstate crystals coupled with photomultiplier tubes. The tests were carried out at the 70 GeV accelerator complex at Protvino, Russia.Comment: 12 pages, 8 figures, LaTeX2e, revised versio

    Loop Corrections to Cosmological Perturbations in Multi-field Inflationary Models

    Full text link
    We investigate one-loop quantum corrections to the power spectrum of adiabatic perturbation from entropy modes/adiabatic mode cross-interactions in multiple DBI inflationary models. We find that due to the non-canonical kinetic term in DBI models, the loop corrections are enhanced by slow-varying parameter ϵ\epsilon and small sound speed csc_s. Thus, in general the loop-corrections in multi-DBI models can be large. Moreover, we find that the loop-corrections from adiabatic/entropy cross-interaction vertices are IR finite.Comment: 21 pages, 7 figures; v2, typos corrected, ref added; v3 typos corrected, version for publishing in jca
    corecore