51 research outputs found

    Anisotropies in magnetic field evolution and local Lyapunov exponents

    Get PDF
    The natural occurrence of small scale structures and the extreme anisotropy in the evolution of a magnetic field embedded in a conducting flow is interpreted in terms of the properties of the local Lyapunov exponents along the various local characteristic (un)stable directions for the Lagrangian flow trajectories. The local Lyapunov exponents and the characteristic directions are functions of Lagrangian coordinates and time, which are completely determined once the flow field is specified. The characteristic directions that are associated with the spatial anisotropy of the problem, are prescribed in both Lagrangian and Eulerian frames. Coordinate transformation techniques are employed to relate the spatial distributions of the magnetic field, the induced current density, and the Lorentz force, which are usually followed in Eulerian frame, to those of the local Lyapunov exponents, which are naturally defined in Lagrangian coordinates

    Lyapunov Mode Dynamics in Hard-Disk Systems

    Full text link
    The tangent dynamics of the Lyapunov modes and their dynamics as generated numerically - {\it the numerical dynamics} - is considered. We present a new phenomenological description of the numerical dynamical structure that accurately reproduces the experimental data for the quasi-one-dimensional hard-disk system, and shows that the Lyapunov mode numerical dynamics is linear and separate from the rest of the tangent space. Moreover, we propose a new, detailed structure for the Lyapunov mode tangent dynamics, which implies that the Lyapunov modes have well-defined (in)stability in either direction of time. We test this tangent dynamics and its derivative properties numerically with partial success. The phenomenological description involves a time-modal linear combination of all other Lyapunov modes on the same polarization branch and our proposed Lyapunov mode tangent dynamics is based upon the form of the tangent dynamics for the zero modes

    Hill's Equation with Random Forcing Parameters: Determination of Growth Rates through Random Matrices

    Full text link
    This paper derives expressions for the growth rates for the random 2 x 2 matrices that result from solutions to the random Hill's equation. The parameters that appear in Hill's equation include the forcing strength and oscillation frequency. The development of the solutions to this periodic differential equation can be described by a discrete map, where the matrix elements are given by the principal solutions for each cycle. Variations in the forcing strength and oscillation frequency lead to matrix elements that vary from cycle to cycle. This paper presents an analysis of the growth rates including cases where all of the cycles are highly unstable, where some cycles are near the stability border, and where the map would be stable in the absence of fluctuations. For all of these regimes, we provide expressions for the growth rates of the matrices that describe the solutions.Comment: 22 pages, 3 figure

    Statistics of finite-time Lyapunov exponents in the Ulam map

    Full text link
    The statistical properties of finite-time Lyapunov exponents at the Ulam point of the logistic map are investigated. The exact analytical expression for the autocorrelation function of one-step Lyapunov exponents is obtained, allowing the calculation of the variance of exponents computed over time intervals of length nn. The variance anomalously decays as 1/n21/n^2. The probability density of finite-time exponents noticeably deviates from the Gaussian shape, decaying with exponential tails and presenting 2n12^{n-1} spikes that narrow and accumulate close to the mean value with increasing nn. The asymptotic expression for this probability distribution function is derived. It provides an adequate smooth approximation to describe numerical histograms built for not too small nn, where the finiteness of bin size trimmes the sharp peaks.Comment: 6 pages, 4 figures, to appear in Phys. Rev.

    Lyapunov exponent in quantum mechanics. A phase-space approach

    Get PDF
    Using the symplectic tomography map, both for the probability distributions in classical phase space and for the Wigner functions of its quantum counterpart, we discuss a notion of Lyapunov exponent for quantum dynamics. Because the marginal distributions, obtained by the tomography map, are always well defined probabilities, the correspondence between classical and quantum notions is very clear. Then we also obtain the corresponding expressions in Hilbert space. Some examples are worked out. Classical and quantum exponents are seen to coincide for local and non-local time-dependent quadratic potentials. For non-quadratic potentials classical and quantum exponents are different and some insight is obtained on the taming effect of quantum mechanics on classical chaos. A detailed analysis is made for the standard map. Providing an unambiguous extension of the notion of Lyapunov exponent to quantum mechnics, the method that is developed is also computationally efficient in obtaining analytical results for the Lyapunov exponent, both classical and quantum.Comment: 30 pages Late

    Lyapunov exponents for products of complex Gaussian random matrices

    Full text link
    The exact value of the Lyapunov exponents for the random matrix product PN=ANAN1...A1P_N = A_N A_{N-1}...A_1 with each Ai=Σ1/2GicA_i = \Sigma^{1/2} G_i^{\rm c}, where Σ\Sigma is a fixed d×dd \times d positive definite matrix and GicG_i^{\rm c} a d×dd \times d complex Gaussian matrix with entries standard complex normals, are calculated. Also obtained is an exact expression for the sum of the Lyapunov exponents in both the complex and real cases, and the Lyapunov exponents for diffusing complex matrices.Comment: 15 page

    Scalar Decay in Chaotic Mixing

    Full text link
    I review the local theory of mixing, which focuses on infinitesimal blobs of scalar being advected and stretched by a random velocity field. An advantage of this theory is that it provides elegant analytical results. A disadvantage is that it is highly idealised. Nevertheless, it provides insight into the mechanism of chaotic mixing and the effect of random fluctuations on the rate of decay of the concentration field of a passive scalar.Comment: 35 pages, 15 figures. Springer-Verlag conference style svmult.cls (included). Published in "Transport in Geophysical Flows: Ten Years After," Proceedings of the Grand Combin Summer School, 14-24 June 2004, Valle d'Aosta, Italy. Fixed some typo

    Theory and computation of covariant Lyapunov vectors

    Full text link
    Lyapunov exponents are well-known characteristic numbers that describe growth rates of perturbations applied to a trajectory of a dynamical system in different state space directions. Covariant (or characteristic) Lyapunov vectors indicate these directions. Though the concept of these vectors has been known for a long time, they became practically computable only recently due to algorithms suggested by Ginelli et al. [Phys. Rev. Lett. 99, 2007, 130601] and by Wolfe and Samelson [Tellus 59A, 2007, 355]. In view of the great interest in covariant Lyapunov vectors and their wide range of potential applications, in this article we summarize the available information related to Lyapunov vectors and provide a detailed explanation of both the theoretical basics and numerical algorithms. We introduce the notion of adjoint covariant Lyapunov vectors. The angles between these vectors and the original covariant vectors are norm-independent and can be considered as characteristic numbers. Moreover, we present and study in detail an improved approach for computing covariant Lyapunov vectors. Also we describe, how one can test for hyperbolicity of chaotic dynamics without explicitly computing covariant vectors.Comment: 21 pages, 5 figure

    Plankton lattices and the role of chaos in plankton patchiness

    Get PDF
    Spatiotemporal and interspecies irregularities in planktonic populations have been widely observed. Much research into the drivers of such plankton patches has been initiated over the past few decades but only recently have the dynamics of the interacting patches themselves been considered. We take a coupled lattice approach to model continuous-in-time plankton patch dynamics, as opposed to the more common continuum type reaction-diffusion-advection model, because it potentially offers a broader scope of application and numerical study with relative ease. We show that nonsynchronous plankton patch dynamics (the discrete analog of spatiotemporal irregularity) arise quite naturally for patches whose underlying dynamics are chaotic. However, we also observe that for parameters in a neighborhood of the chaotic regime, smooth generalized synchronization of nonidentical patches is more readily supported which reduces the incidence of distinct patchiness. We demonstrate that simply associating the coupling strength with measurements of (effective) turbulent diffusivity results in a realistic critical length of the order of 100 km, above which one would expect to observe unsynchronized behavior. It is likely that this estimate of critical length may be reduced by a more exact interpretation of coupling in turbulent flows

    Disorder-assisted error correction in Majorana chains

    Full text link
    It was recently realized that quenched disorder may enhance the reliability of topological qubits by reducing the mobility of anyons at zero temperature. Here we compute storage times with and without disorder for quantum chains with unpaired Majorana fermions - the simplest toy model of a quantum memory. Disorder takes the form of a random site-dependent chemical potential. The corresponding one-particle problem is a one-dimensional Anderson model with disorder in the hopping amplitudes. We focus on the zero-temperature storage of a qubit encoded in the ground state of the Majorana chain. Storage and retrieval are modeled by a unitary evolution under the memory Hamiltonian with an unknown weak perturbation followed by an error-correction step. Assuming dynamical localization of the one-particle problem, we show that the storage time grows exponentially with the system size. We give supporting evidence for the required localization property by estimating Lyapunov exponents of the one-particle eigenfunctions. We also simulate the storage process for chains with a few hundred sites. Our numerical results indicate that in the absence of disorder, the storage time grows only as a logarithm of the system size. We provide numerical evidence for the beneficial effect of disorder on storage times and show that suitably chosen pseudorandom potentials can outperform random ones.Comment: 50 pages, 7 figure
    corecore