62 research outputs found

    You Can't Get Through Szekeres Wormholes - or - Regularity, Topology and Causality in Quasi-Spherical Szekeres Models

    Full text link
    The spherically symmetric dust model of Lemaitre-Tolman can describe wormholes, but the causal communication between the two asymptotic regions through the neck is even less than in the vacuum (Schwarzschild-Kruskal-Szekeres) case. We investigate the anisotropic generalisation of the wormhole topology in the Szekeres model. The function E(r, p, q) describes the deviation from spherical symmetry if \partial_r E \neq 0, but this requires the mass to be increasing with radius, \partial_r M > 0, i.e. non-zero density. We investigate the geometrical relations between the mass dipole and the locii of apparent horizon and of shell-crossings. We present the various conditions that ensure physically reasonable quasi-spherical models, including a regular origin, regular maxima and minima in the spatial sections, and the absence of shell-crossings. We show that physically reasonable values of \partial_r E \neq 0 cannot compensate for the effects of \partial_r M > 0 in any direction, so that communication through the neck is still worse than the vacuum. We also show that a handle topology cannot be created by identifying hypersufaces in the two asymptotic regions on either side of a wormhole, unless a surface layer is allowed at the junction. This impossibility includes the Schwarzschild-Kruskal-Szekeres case.Comment: zip file with LaTeX text + 6 figures (.eps & .ps). 47 pages. Second replacement corrects some minor errors and typos. (First replacement prints better on US letter size paper.

    Expression and secretion of human recombinant LIF by genetically modified mammalian cells

    No full text
    Aim. The aim of this work was to express the human LIF gene in mammalian cells and to study the secretion of recombinant LIF into culture medium. Methods. Recombinant LIF was detected by Western blot analysis and immunoprecipitation in culture medium of CHO-K1, L-M (TK– ) (ins+ ), 293Ò cells, transfected with recombinant plasmids containing human LIF gene. Results. The recombi- nant plasmids. containing human gene LIF, were constructed. The cells of three (CHO-K1, L-M (TK– ) (ins+ ), 293Ò) mammalian lines were transfected with these plasmids. It was shown that the transfected mammalian cells secreted recombinant human LIF which was characterized by variable degree of glycosylation including completely glycosylated form (approximately 68 kD). Ñonclusions. The conditioned medium of developed cell lines can be used as a sourñe of human recombinant LIF for different purposes, including purification of human recombinant LIF and as an additional supplement for cell culturing. Keywords: recombinant LIF, expression, secretion, transfection, cell lines.Цель работы состояла в получении экспрессии гена LIF человека в генетически модифицированных клетках млекопитающих и изучении секреции рекомбинантного белка этими клетками в культуральную среду. Методы. Для выявления рекомбинантного LIF в кондиционированной среде, полученной в результате культивирования клеток, трансфецированных рекомбинантными плазмидами, содержащими ген LIF, использовали Вестерн-блот-анализ и иммунопреципитацию. Результаты. Сконструированные рекомбинантные плазмиды обеспечивают експрессию и секрецию рекомбинантного LIF человека клетками трех линий (CHO-K1, L-M(TK– )(ins + ) и 293Т), трансфецированными этими плазмидами. Степень гликозилирования продуцируемого такими клетками рекомбинантного LIF варьирует, при этом наблюдается секреция полностью гликозилированного LIF (с молекулярной массой около 68 кДа). Выводы. Кондиционированную среду, полученную вследствие культивирования трансфецированных клеток, можно использовать как источник LIF человека для культивирования клеток, нуждающихся в этом ростовом факторе, и для его выделения в чистом виде. Ключевые слова: рекомбинантный LIF, экспрессия, секреция, трансфекция,клеточные линииМета. Мета роботи полягала в одержанні експресії гена LIF людини в генетично модифікованих клітинах ссавців і вивченні секреції рекомбінантного білка цими клітинами в культуральне середовище. Методи. Для визначення рекомбінантного LIF в кондиціонованому середовищі, одержаному в результаті культивування клітин, трансфекованих рекомбінантними плазмідами, що містять ген LIF, використовували Вестернблот аналіз та імунопреципітацію. Результати. Сконструйовані рекомбінантні плазміди забезпечують експресію і секрецію рекомбінантного LIF людини клітинами трьох ліній (CHOK1, L-M(TK– )(ins + ) і 293Т), трансфекованих цими плазмідами. Ступінь глікозилювання рекомбінантного LIF, продукованого такими клітинами, варіює, при цьому спостерігається секреція повністю глікозильованого LIF (з молекулярною масою близько 68 кДа). Висновки. Кондиціоноване середовище, одержане внаслідок культивування трансфекованих клітин, можна використовувати як джерело LIF людини для культивування клітин, яким потрібен цей ростовий фактор, а також для його виділення в очищеному стані. Ключові слова: рекомбінантний LIF, експресія, секреція, трансфекція, клітинні лінії

    Fundamental gap in fundamental biology

    No full text
    The article raises the problems of intracellular spatial and temporal organization of metabolism, signaling, and energy supply of these processes. To provide cell functions, the enzymes of metabolic chains, molecules of signaling pathways, and macroergs (as units of molecular interactions, accompanied by energy consumption) should find their partners and get their precise spatial relationship. The current views are based on ideas of compartmentalization of all processes as local sites of cellular matrix membrane, where specific stages of different metabolic cycles take place. The assembly of complexes of macromolecules in the number and combinations, required for their adequate functioning in the space of a cell, is generally described as intracellular transport of vesicles, implemented by mobile elements of cytoske- leton. Inside the vesicle there is «effective load» – macromolecules. The membranes of these vesicles fuse with specific sites of the matrix membranes and therefore relocate macromolecules. Neither calcula- tions nor assumptions allow explaining precise formation of enzymatic chains, their interaction, signaling, etc. on this basis. Such transport of macromolecules (inside vesicles) enables solving other tasks. The concept of search-and-address systems in the form of space-scanning micro vesicles is proposed and well-grounded for purposes of searching for partners, forming chains and complexes, and building compartments. The micro vesicles collect corresponding chains of enzymes, signaling, and ensure the interactions on their surface. These micro vesicles are exactly those compartments, which provide for both precision of processes and their relationship. Keywords: metabolism, cell, compartmentalization, vesicle, trans- port of macromolecules, precision of processes.Ставится проблема внутриклеточной пространственно-временной организации метаболизма, сигналинга и энергетического обеспечения этих процессов. Для функционирования клетки ферменты метаболических цепей, молекулы сигнальных путей, макроэрги (как единицы молекулярных взаимодействий, сопровождающихся поглощением энергии) должны находить своих партнеров и пространственно-прецизионно взаиморасполагаться. Существующие представления основаны на идеях компартментализации всех этих процессов в виде локальных участков мембраны клеточного матрикса, на которых происходят отдельные этапы различных циклов. Сборка комплексов макромолекул в требуемом количестве и сочетаниях для их адекватного функционирования в пространстве клетки в самом общем виде описывается как внутриклеточный транспорт везикул, осуществляемый подвижными элементами цитоскелета. А внутри везикул расположен «полезный груз» – макромолекулы. Мембраны таких везикул сливаются с определенными участками мембран матрикса и таким способом перемещают макромолекулы. Любые расчеты и любые допущения не позволяют на подобной основе объяснить прецизионные формирования ферментных цепей, их взаимодействие, сигналинг и т. д. Такой транспорт макромолекул (внутри везикул) обеспечивает решение иных задач. Для объяснения поиска партнеров, формирования цепей и комплексов, образования компартментов предлагается и обосновывается концепция поисково-адресных систем доставки в виде сканирующих пространство клетки микровезикул. Они собирают на своей поверхности соответствующие цепи ферментов, участков сигналинга, их взаимодействия. Такие микровезикулы и являются компартментами, обеспечивающими и прецизионность процессов, и их взаимодействие. Ключевые слова: метаболизм, клетка, компартментализация, везикула, транспорт макромолекул, прецизионность процессов.У публікації поставлено проблему внутрішньоклітинної просторово-часової організації метаболізму, сигналінгу та енергетичного забезпечення цих процесів. Для функціонування клітини ферменти метаболічних ланцюгів, молекули сигнальних шляхів, макроерги (як одиниці молекулярних взаємодій, що супроводжуються поглинанням енергії) повинні знаходити своїх партнерів і мати просторово-прецизійне взаєморозташування. Існуючі уявлення засновано на ідеях компартменталізації усіх цих процесів у вигляді локальних ділянок мембрани клітинного матрикса, де відбуваються окремі етапи різних циклів. Збирання комплексів макромолекул у необхідній кількості і комбінаціях для їхнього адекватного функціонування у просторі клітини у самому загальному вигляді описується як внутрішньоклітинний транспорт везикул, який здійснюється рухливими елементами цитоскелета. А всередині везикул розташований «корисний вантаж» – макромолекули. Мембрани таких везикул зливаються з певними ділянками мембран матриксу і таким чином пересувають макромолекули. Будь-які розрахунки і припущення не дозволяють на подібній основіз’ясувати прецизійні формування ферментних ланцюгів, їхню взаємодію, сигналінг тощо. Такий транспорт макромолекул (усередині везикул) забезпечує вирішення інших завдань. Для пояснення пошуку партнерів, формування ланцюгів і комплексів, створення компартментів пропонується і обгрунтовується концепція пошуково-адресних систем доставки у вигляді скануючих простір клітини мікровезикул. Вони збирають на своїй поверхні відповідні ланцюги ферментів, ділянок сигналінгу, їхньої взаємодії. Такі мікровезикули і є компартментами, що забезпечують і прецизійність процесів, і їхню взаємодію. Ключові слова: метаболізм, клітина, компартменталізація, везикула, транспорт макромолекул, прецизійність процесів

    Kimmeridgian-Tithonian sea-level fluctuations in the Uljanovsk-Saratov Basin (Russian Platform)

    Get PDF
    Abstract The Uljanovsk-Saratov Basin, located in the southeast of the Russian Platform, presents an intriguing record of the Kimmeridgian-Tithonian sea-level fluctuations. In the Late Jurassic, this basin was a trough within the Interior Russian Sea. The data available from both outcrops and boreholes have permitted outlining a number of lithostratigraphic units and regional hiatuses in the northeastern segment of the Uljanovsk-Saratov Basin, thus permitting a precise reconstruction of transgressions/regressions and deepenings/shallowings. In total, three transgressive-regressive cycles and two deepening pulses have been established. These regionally documented changes were both related in part to global eustatic changes, and they also corresponded in part to the regional sea-level changes in some basins of Western Europe and Northern Africa, but not to those of the Arabian Platform. Differences observed between the global and regional curves as well as rapid Tithonian sea-level oscillations are explained by the influences of tectonic activity. It is hypothesized that the regional Tithonian oxygen depletion might have been a consequence from the rapid flooding of a densely vegetated land

    New precise determination of the \tau lepton mass at KEDR detector

    Full text link
    The status of the experiment on the precise τ\tau lepton mass measurement running at the VEPP-4M collider with the KEDR detector is reported. The mass value is evaluated from the τ+τ\tau^+\tau^- cross section behaviour around the production threshold. The preliminary result based on 6.7 pb1^{-1} of data is mτ=1776.800.23+0.25±0.15m_{\tau}=1776.80^{+0.25}_{-0.23} \pm 0.15 MeV. Using 0.8 pb1^{-1} of data collected at the ψ\psi' peak the preliminary result is also obtained: ΓeeBττ(ψ)=7.2±2.1\Gamma_{ee}B_{\tau\tau}(\psi') = 7.2 \pm 2.1 eV.Comment: 6 pages, 8 figures; The 9th International Workshop on Tau-Lepton Physics, Tau0

    Study of the radiative decay ϕηγ\phi \to \eta \gamma with CMD-2 detector

    Full text link
    Using the 1.9pb11.9 pb^{-1} of data collected with the CMD-2 detector at VEPP-2M the decay mode ϕηγ\phi \to \eta \gamma, ηπ+ππ0\eta \to \pi^+\pi^-\pi^0 has been studied. The obtained branching ratio is B(ϕηγ)=(1.18±0.03±0.06)\phi \to \eta \gamma) = (1.18 \pm 0.03 \pm 0.06) %.Comment: 13 pages, 5 figures, LaTex2e, to be published in Phys. Lett.

    Measurement of omega meson parameters in pi^+pi^-pi^0 decay mode with CMD-2

    Full text link
    About 11 200 e^+e^- -> omega -> pi^+pi^-pi^0 events selected in the center of mass energy range from 760 to 810 MeV were used for the measurement of the \omega meson parameters. The following results have been obtained: sigma _{0}=(1457 \pm 23 \pm 19)nb, m_{\omega}=(782.71 \pm 0.07 \pm 0.04) MeV/c^{2}, \Gamma_{\omega}=(8.68 \pm 0.23 \pm 0.10) MeV, \Gamma_{e^+e^-}\cdot Br (\omega -> pi^+pi^-pi^0)= (0.528 \pm 0.012 \pm 0.007) \cdot 10^{-3} MeV.Comment: 8 pages, 4 figure

    Observation of KS0K_S^0 semileptonic decays with CMD-2 detector

    Full text link
    The decay KS0πeνK_S^0 \to \pi e \nu has been observed by the CMD-2 detector at the e^+e^- collider VEPP-2M at Novosibirsk. Of 6 million produced KL0KS0K_L^0K_S^0 pairs, 75±1375 \pm 13 events of the KS0πeνK_S^0 \to \pi e \nu decay were selected. The corresponding branching ratio is B(KS0πeν)=(7.2±1.4)×104B(K_S^0 \to \pi e \nu)=(7.2 \pm 1.4)\times10^{-4}. This result is consistent with the evaluation of B(KS0πeν)B(K_S^0 \to \pi e \nu) from the KL0K_L^0 semileptonic rate and KS0K_S^0 lifetime assuming ΔS=ΔQ\Delta S=\Delta Q .Comment: 7 pages, 6 figures, LaTex2e. Submitted to Phys.Lett.

    Measurement of RudsR_{\text{uds}} and RR between 3.12 and 3.72 GeV at the KEDR detector

    Get PDF
    Using the KEDR detector at the VEPP-4M e+ee^+e^- collider, we have measured the values of RudsR_{\text{uds}} and RR at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than 3.3%3.3\% at most of energy points with a systematic uncertainty of about 2.1%2.1\%. At the moment it is the most accurate measurement of R(s)R(s) in this energy range
    corecore