6 research outputs found

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF
    The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear e+ee^+e^- collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years

    Optimization of the electrostatic structure of the ion microprobe

    No full text
    The paper presents optimization data obtained for an immersion probe-forming system of the ion microprobe to be used in 3 MeV H+ ion accelerator generating 0,4 μm beam spot for normalized acceptance of 7 μm2 · mrad2 · MeV. To achieve higher microprobe resolution it is intended to place an electrostatic lens between the collimators and the accelerating tube

    Optimization of ion-optics system for x-ray quasi-monochromatic source on the basis of electrostatic accelerator

    No full text
    Ion-optics system with two doublets of electrostatic quadrupole lenses for X-ray quasimonochromatic source was selected. Two variants of lens excitation for stigmatic focusing with two and four independent power supplies are considered. It is shown that using of four independent power supplies leads to improvement of focused ion beam parameters at converter

    New approach to the approximation of «dose – effect» dependence during the human somatic cells irradiation

    No full text
    New data on cytogenetic approximation of the experimental cytogenetic dependence "dose - effect" based on the spline regression model that improves biological dosimetry of human radiological exposure were received. This is achieved by reducing the error of the determination of absorbed dose as compared to the traditional use of linear and linear-quadratic models and makes it possible to predict the effect of dose curves on plateau
    corecore