258 research outputs found

    Finding Induced Subgraphs via Minimal Triangulations

    Get PDF
    Potential maximal cliques and minimal separators are combinatorial objects which were introduced and studied in the realm of minimal triangulations problems including Minimum Fill-in and Treewidth. We discover unexpected applications of these notions to the field of moderate exponential algorithms. In particular, we show that given an n-vertex graph G together with its set of potential maximal cliques Pi_G, and an integer t, it is possible in time |Pi_G| * n^(O(t)) to find a maximum induced subgraph of treewidth t in G; and for a given graph F of treewidth t, to decide if G contains an induced subgraph isomorphic to F. Combined with an improved algorithm enumerating all potential maximal cliques in time O(1.734601^n), this yields that both problems are solvable in time 1.734601^n * n^(O(t)).Comment: 14 page

    Mechanical Translation

    Get PDF
    Contains research objectives.National Science Foundation (Grant G-24047

    Mechanical Translation

    Get PDF
    Contains research objectives.National Science Foundatio

    Mechanical Translation

    Get PDF
    Contains research objectives and report on status of research.National Science Foundatio

    Mechanical Translation

    Get PDF
    Contains reports on one research project

    Exploring Subexponential Parameterized Complexity of Completion Problems

    Get PDF
    Let F{\cal F} be a family of graphs. In the F{\cal F}-Completion problem, we are given a graph GG and an integer kk as input, and asked whether at most kk edges can be added to GG so that the resulting graph does not contain a graph from F{\cal F} as an induced subgraph. It appeared recently that special cases of F{\cal F}-Completion, the problem of completing into a chordal graph known as Minimum Fill-in, corresponding to the case of F={C4,C5,C6,}{\cal F}=\{C_4,C_5,C_6,\ldots\}, and the problem of completing into a split graph, i.e., the case of F={C4,2K2,C5}{\cal F}=\{C_4, 2K_2, C_5\}, are solvable in parameterized subexponential time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})}n^{O(1)}. The exploration of this phenomenon is the main motivation for our research on F{\cal F}-Completion. In this paper we prove that completions into several well studied classes of graphs without long induced cycles also admit parameterized subexponential time algorithms by showing that: - The problem Trivially Perfect Completion is solvable in parameterized subexponential time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})}n^{O(1)}, that is F{\cal F}-Completion for F={C4,P4}{\cal F} =\{C_4, P_4\}, a cycle and a path on four vertices. - The problems known in the literature as Pseudosplit Completion, the case where F={2K2,C4}{\cal F} = \{2K_2, C_4\}, and Threshold Completion, where F={2K2,P4,C4}{\cal F} = \{2K_2, P_4, C_4\}, are also solvable in time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})} n^{O(1)}. We complement our algorithms for F{\cal F}-Completion with the following lower bounds: - For F={2K2}{\cal F} = \{2K_2\}, F={C4}{\cal F} = \{C_4\}, F={P4}{\cal F} = \{P_4\}, and F={2K2,P4}{\cal F} = \{2K_2, P_4\}, F{\cal F}-Completion cannot be solved in time 2o(k)nO(1)2^{o(k)} n^{O(1)} unless the Exponential Time Hypothesis (ETH) fails. Our upper and lower bounds provide a complete picture of the subexponential parameterized complexity of F{\cal F}-Completion problems for F{2K2,C4,P4}{\cal F}\subseteq\{2K_2, C_4, P_4\}.Comment: 32 pages, 16 figures, A preliminary version of this paper appeared in the proceedings of STACS'1

    Mechanical Translation

    Get PDF
    Contains reports on one research project.National Science Foundatio

    Mechanical Translation

    Get PDF
    Contains reports on two research projects.National Science Foundatio
    corecore