230 research outputs found

    Temperature dependence of the diffuse scattering fine structure in equiatomic CuAu

    Get PDF
    The temperature dependence of the diffuse scattering fine structure from disordered equiatomic CuAu was studied using {\it in situ} x-ray scattering. In contrast to Cu3_3Au the diffuse peak splitting in CuAu was found to be relatively insensitive to temperature. Consequently, no evidence for a divergence of the antiphase length-scale at the transition temperature was found. At all temperatures studied the peak splitting is smaller than the value corresponding to the CuAuII modulated phase. An extended Ginzburg-Landau approach is used to explain the temperature dependence of the diffuse peak profiles in the ordering and modulation directions. The estimated mean-field instability point is considerably lower than is the case for Cu3_3Au.Comment: 4 pages, 5 figure

    Point-charge electrostatics in disordered alloys

    Full text link
    A simple analytic model of point-ion electrostatics has been previously proposed in which the magnitude of the net charge q_i on each atom in an ordered or random alloy depends linearly on the number N_i^(1) of unlike neighbors in its first coordination shell. Point charges extracted from recent large supercell (256-432 atom) local density approximation (LDA) calculations of Cu-Zn random alloys now enable an assessment of the physical validity and accuracy of the simple model. We find that this model accurately describes (i) the trends in q_i vs. N_i^(1), particularly for fcc alloys, (ii) the magnitudes of total electrostatic energies in random alloys, (iii) the relationships between constant-occupation-averaged charges and Coulomb shifts (i.e., the average over all sites occupied by either AA or BB atoms) in the random alloy, and (iv) the linear relation between the site charge q_i and the constant- charge-averaged Coulomb shift (i.e., the average over all sites with the same charge) for fcc alloys. However, for bcc alloys the fluctuations predicted by the model in the q_i vs. V_i relation exceed those found in the LDA supercell calculations. We find that (a) the fluctuations present in the model have a vanishing contribution to the electrostatic energy. (b) Generalizing the model to include a dependence of the charge on the atoms in the first three (two) shells in bcc (fcc) - rather than the first shell only - removes the fluctuations, in complete agreement with the LDA data. We also demonstrate an efficient way to extract charge transfer parameters of the generalized model from LDA calculations on small unit cells.Comment: 15 pages, ReVTeX galley format, 7 eps figures embedded using psfig, to be published in Phys. Rev.

    Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic

    Get PDF
    Monte Carlo (MC) simulations of lattice models are a widely used way to compute thermodynamic properties of substitutional alloys. A limitation to their more widespread use is the difficulty of driving a MC simulation in order to obtain the desired quantities. To address this problem, we have devised a variety of high-level algorithms that serve as an interface between the user and a traditional MC code. The user specifies the goals sought in a high-level form that our algorithms convert into elementary tasks to be performed by a standard MC code. For instance, our algorithms permit the determination of the free energy of an alloy phase over its entire region of stability within a specified accuracy, without requiring any user intervention during the calculations. Our algorithms also enable the direct determination of composition-temperature phase boundaries without requiring the calculation of the whole free energy surface of the alloy system

    Calculation of solubility in titanium alloys from first-principles

    Full text link
    We present an approach to calculate the atomic bulk solubility in binary alloys based on the statistical-thermodynamic theory of dilute lattice gas. The model considers all the appropriate ground states of the alloy and results in a simple Arrhenius-type temperature dependence determined by a {\it "low-solubility formation enthalpy"}. This quantity, directly obtainable from first-principle calculations, is defined as the composition derivative of the compound formation enthalpy with respect to nearby ground states. We apply the framework and calculate the solubility of the A specie in A-Ti alloys (A=Ag,Au,Cd,Co,Cr,Ir,W,Zn). In addition to determining unknown low-temperature ground states for the eight alloys, we find qualitative agreements with solubility experimental results. The presented formalism, correct in the low-solubility limit, should be considered as an appropriate starting point for determining if more computationally expensive formalisms are otherwise needed.Comment: 10 pages, 12 figure

    Screened Coulomb interactions in metallic alloys: I. Universal screening in the atomic sphere approximation

    Get PDF
    We have used the locally self-consistent Green's function (LSGF) method in supercell calculations to establish the distribution of the net charges assigned to the atomic spheres of the alloy components in metallic alloys with different compositions and degrees of order. This allows us to determine the Madelung potential energy of a random alloy in the single-site mean field approximation which makes the conventional single-site density-functional- theory coherent potential approximation (SS-DFT-CPA) method practically identical to the supercell LSGF method with a single-site local interaction zone that yields an exact solution of the DFT problem. We demonstrate that the basic mechanism which governs the charge distribution is the screening of the net charges of the alloy components that makes the direct Coulomb interactions short-ranged. In the atomic sphere approximation, this screening appears to be almost independent of the alloy composition, lattice spacing, and crystal structure. A formalism which allows a consistent treatment of the screened Coulomb interactions within the single-site mean-filed approximation is outlined. We also derive the contribution of the screened Coulomb interactions to the S2 formalism and the generalized perturbation method.Comment: 28 pages, 8 figure

    First principles calculations and experiments for Cu-Mg/Li hydrides negative electrodes

    Get PDF
    We have studied CuLi0.08Mg1.92 and determined that the compound reacts with hydrogen to form CuLi0.08Mg 1.92H5 [1]. Additionally, we have proposed the compound as a negative electrode material which is the main purpose of the present study. Moreover, we have observed that the latter compound acts as a catalyst in the formation of MgH2, LiH, TiH2 [2] and hydrogen desorption. In this work, first principles and phonon calculations were performed in order to establish the reactions occurring at the negative electrode of a Li conversion battery in presence of CuLi0.08Mg1.92H 5 and (Li) - solid solution of Mg in Li - Approximately Li 2Mg3. We have calculated the minimum theoretical specific capacity to be 1156 mAh/g (for an anode with 100% of CuLi0.08Mg 1.92H5) and the Eeq = 0.81 V (vs. Li+/Li) at 298 K. Furthermore, we have determined all the reactions occurring in the referred system and its sequence using Inelastic Incoherent Neutron Scattering (TINS) and X-Ray Diffraction (XRD). (c) 2013 Materials Research Society

    Screened Coulomb interactions in metallic alloys: II Screening beyond the single-site and atomic sphere approximations

    Get PDF
    A quantitative description of the configurational part of the total energy of metallic alloys with substantial atomic size difference cannot be achieved in the atomic sphere approximation: It needs to be corrected at least for the multipole moment interactions in the Madelung part of the one-electron potential and energy. In the case of a random alloy such interactions can be accounted for only by lifting the atomic sphere and single-site approximations, in order to include the polarization due to local environment effects. Nevertheless a simple parameterization of the screened Coulomb interactions for the ordinary single-site methods, including the generalized perturbation method, is still possible. We obtained such a parameterization for bulk and surface NiPt alloys, which allows one to obtain quantitatively accurate effective interactions in this system.Comment: 24 pages, 2 figure
    • …
    corecore