73 research outputs found

    Small scale analysis of population structure in the woody cornelian cherry Cornus mas L. (Cornaceae) by AFLP accentuates the need for a population based conservation strategy

    Get PDF
    We investigated population differentiation among and within three populations (two natural, one artificial) of the cornelian cherry (Cornus mas L., Cornaceae) to examine the extent of gene flow from planted cornelian cherries commonly used in planting vegetations of public parks or streets into natural stands. Additionall we assessed if natural populations show any intrapopulational and/or interpopulational differentiation pointing towards restricted gene flow with possible necessity for a population based conservation strategy rather than a taxon based strategy. Results clearly indicated within and between population structure a radius of isolation by distance for pollen and seed dispersal of about 5.0 km. Interestingly genetic distance did not support coherence of the two natural populations but mirrored the historical origin of the innertown population from diverse natural sources reflecting the traditional use and selection of edible varieties from nature. The Nem value of 1.25 implicates the prevention of population differentation. However the low level of genetic diversity and distance at all might mislead the interpretation and the degree of distance reflects more ancient similarities than actual geneflow. Given this observable isolation by distance, conservation biology of Cornus mas requires a population based strategy rather than a broad taxon based strategy

    Species by Environment Interactions Affect Pyrrolizidine Alkaloid Expression in Senecio jacobaea, Senecio aquaticus, and Their Hybrids

    Get PDF
    We examined the effects of water and nutrient availability on the expression of the defense pyrrolizidine alkaloids (PAs) in Senecio jacobaea and S. aquaticus. Senecio jacobaea, and S. aquaticus are adapted to different natural habitats, characterized by differing abiotic conditions and different selection pressures from natural enemies. We tested if PA concentration and diversity are plastic over a range of water and nutrient treatments, and also whether such plasticity is dependent on plant species. We also tested the hypothesis that hybridization may contribute to PA diversity within plants, by comparing PA expression in parental species to that in artificially generated F1 hybrids, and also in later generation natural hybrids between S. jacobaea and S. aquaticus. We showed that total PA concentration in roots and shoots is not dependent on species, but that species determines the pattern of PA diversification. Pyrrolizidine alkaloid diversity and concentration are both dependent on environmental factors. Hybrids produce a putatively novel PA, and this PA is conserved in natural hybrids, that are backcrossed to S. jacobaea. Natural hybrids that are backcrossed several times to S. jacobaea are with regard to PA diversity significantly different from S. jacobaea but not from S. aquaticus, while F1 hybrids are in all cases more similar to S. jacobaea. These results collectively suggest that PA diversity is under the influence of natural selection

    Interspecific Hybridization and Mitochondrial Introgression in Invasive Carcinus Shore Crabs

    Get PDF
    Interspecific hybridization plays an important role in facilitating adaptive evolutionary change. More specifically, recent studies have demonstrated that hybridization may dramatically influence the establishment, spread, and impact of invasive populations. In Japan, previous genetic evidence for the presence of two non-native congeners, the European green crab Carcinus maenas and the Mediterranean green crab C. aestuarii, has raised questions regarding the possibility of hybridization between these sister species. Here I present analysis based on both nuclear microsatellites and the mitochondrial cytochrome C oxidase subunit I (COI) gene which unambiguously argues for a hybrid origin of Japanese Carcinus. Despite the presence of mitochondrial lineages derived from both C. maenas and C. aestuarii, the Japanese population is panmictic at nuclear loci and has achieved cytonuclear equilibrium throughout the sampled range in Japan. Furthermore, analysis of admixture at nuclear loci indicates dramatic introgression of the C. maenas mitochondrial genome into a predominantly C. aestuarii nuclear background. These patterns, along with inferences drawn from the observational record, argue for a hybridization event pre-dating the arrival of Carcinus in Japan. The clarification of both invasion history and evolutionary history afforded by genetic analysis provides information that may be critically important to future studies aimed at assessing risks posed by invasive Carcinus populations to Japan and the surrounding region

    A Continental-Wide Perspective: The Genepool of Nuclear Encoded Ribosomal DNA and Single-Copy Gene Sequences in North American Boechera (Brassicaceae)

    Get PDF
    74 of the currently accepted 111 taxa of the North American genus Boechera (Brassicaceae) were subject to pyhlogenetic reconstruction and network analysis. The dataset comprised 911 accessions for which ITS sequences were analyzed. Phylogenetic analyses yielded largely unresolved trees. Together with the network analysis confirming this result this can be interpreted as an indication for multiple, independent, and rapid diversification events. Network analyses were superimposed with datasets describing i) geographical distribution, ii) taxonomy, iii) reproductive mode, and iv) distribution history based on phylogeographic evidence. Our results provide first direct evidence for enormous reticulate evolution in the entire genus and give further insights into the evolutionary history of this complex genus on a continental scale. In addition two novel single-copy gene markers, orthologues of the Arabidopsis thaliana genes At2g25920 and At3g18900, were analyzed for subsets of taxa and confirmed the findings obtained through the ITS data

    The ITS1-5.8S-ITS2 Sequence Region in the Musaceae: Structure, Diversity and Use in Molecular Phylogeny

    Get PDF
    Genes coding for 45S ribosomal RNA are organized in tandem arrays of up to several thousand copies and contain 18S, 5.8S and 26S rRNA units separated by internal transcribed spacers ITS1 and ITS2. While the rRNA units are evolutionary conserved, ITS show high level of interspecific divergence and have been used frequently in genetic diversity and phylogenetic studies. In this work we report on the structure and diversity of the ITS region in 87 representatives of the family Musaceae. We provide the first detailed information on ITS sequence diversity in the genus Musa and describe the presence of more than one type of ITS sequence within individual species. Both Sanger sequencing of amplified ITS regions and whole genome 454 sequencing lead to similar phylogenetic inferences. We show that it is necessary to identify putative pseudogenic ITS sequences, which may have negative effect on phylogenetic reconstruction at lower taxonomic levels. Phylogenetic reconstruction based on ITS sequence showed that the genus Musa is divided into two distinct clades – Callimusa and Australimusa and Eumusa and Rhodochlamys. Most of the intraspecific banana hybrids analyzed contain conserved parental ITS sequences, indicating incomplete concerted evolution of rDNA loci. Independent evolution of parental rDNA in hybrids enables determination of genomic constitution of hybrids using ITS. The observation of only one type of ITS sequence in some of the presumed interspecific hybrid clones warrants further study to confirm their hybrid origin and to unravel processes leading to evolution of their genomes

    Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Pyrus </it>belongs to the tribe Pyreae (the former subfamily Maloideae) of the family Rosaceae, and includes one of the most important commercial fruit crops, pear. The phylogeny of <it>Pyrus </it>has not been definitively reconstructed. In our previous efforts, the internal transcribed spacer region (ITS) revealed a poorly resolved phylogeny due to non-concerted evolution of nrDNA arrays. Therefore, introns of low copy nuclear genes (LCNG) are explored here for improved resolution. However, paralogs and lineage sorting are still two challenges for applying LCNGs in phylogenetic studies, and at least two independent nuclear loci should be compared. In this work the second intron of <it>LEAFY </it>and the alcohol dehydrogenase gene (<it>Adh</it>) were selected to investigate their molecular evolution and phylogenetic utility.</p> <p>Results</p> <p>DNA sequence analyses revealed a complex ortholog and paralog structure of <it>Adh </it>genes in <it>Pyrus </it>and <it>Malus</it>, the pears and apples. Comparisons between sequences from RT-PCR and genomic PCR indicate that some <it>Adh </it>homologs are putatively nonfunctional. A partial region of <it>Adh1 </it>was sequenced for 18 <it>Pyrus </it>species and three subparalogs representing <it>Adh1-1 </it>were identified. These led to poorly resolved phylogenies due to low sequence divergence and the inclusion of putative recombinants. For the second intron of <it>LEAFY</it>, multiple inparalogs were discovered for both <it>LFY1int2 </it>and <it>LFY2int2</it>. <it>LFY1int2 </it>is inadequate for phylogenetic analysis due to lineage sorting of two inparalogs. <it>LFY2int2-N</it>, however, showed a relatively high sequence divergence and led to the best-resolved phylogeny. This study documents the coexistence of outparalogs and inparalogs, and lineage sorting of these paralogs and orthologous copies. It reveals putative recombinants that can lead to incorrect phylogenetic inferences, and presents an improved phylogenetic resolution of <it>Pyrus </it>using <it>LFY2int2-N</it>.</p> <p>Conclusions</p> <p>Our study represents the first phylogenetic analyses based on LCNGs in <it>Pyrus</it>. Ancient and recent duplications lead to a complex structure of <it>Adh </it>outparalogs and inparalogs in <it>Pyrus </it>and <it>Malus</it>, resulting in neofunctionalization, nonfunctionalization and possible subfunctionalization. Among all investigated orthologs, <it>LFY2int2-N </it>is the best nuclear marker for phylogenetic reconstruction of <it>Pyrus </it>due to suitable sequence divergence and the absence of lineage sorting.</p

    Flower color evolution within the Cichorieae (Asteraceae): the Flavonoid-3’5’-Hydroxylase

    Get PDF
    The blue flower color within the Cichorieae (Asteraceae) is thought to be determined by the presence of anthocyanins. The anthocyanin biosynthetic pathway is quite well studied. Two enzymes, flavonoid 3’ hydroxylase and flavonoid 3’, 5’ hydroxylase, determine the hydroxylation pattern of the anthocyaninswhich exhibit three classes: cyanidins (mainly in charge of redish/pink flowers), delphinidins (in charge of bluish flowers), and pelargonidins (one possibility to exhibit orange flower color). We here investigate flower color evolution in two closely related species of two different genera of the Cichorieae featuring yellow (Catananchelutea L.; Lactucaserriola L.) and bluish (Catananchecaerulea L., Lactucaperennis L.) flowers.Whereas, the yellow flowering species C. lutea and L. serrioladid notexpress F3’5’H it was possible to partially sequence the F3’5’H mRNA in C. caerulea and L. perennis. The q-RT PCR expression pattern revealed F3’5’Hto be expressed in different levels at different times and developmental stages during flower development of C. caerulea and L. perennis.The expression is preceding the petal coloration in the flowers. A phylogenetic analysis revealed high similarity of the bluish Cichorieae F3’5’H with other AsteraceaeF3’Hs and F3’5’H pinpointing to a neofunctionalization of this enzyme, to enable the Asteraceae to produce delphinidins again. In addition, the flavonoid composition was analyzed via LC-MS and HPLC. All four species contain caffeic acid, p-coumaric acid and 3’ hydroxylated flavonoids like quercetin derivatives. Delphinidin, Pelargonidin and Cyanidin were found in C. caerulea, while L. perennis only featured Pelargonidin and Cyanidin which was also found in much lower concentrations in L. serriola. Missing anthocyaninsin C. lutea might be indicative for an inactivation of the DFRenzyme(dihydroflavonol 4-reductase) in this species which might be yellow flowered due to carotinoids. Investigating enzyme activities will be the next step to reveal flower color evolution within the Cichoriea

    Introduction to the 2005 IBC symposium papers on the evolution of Rosaceae

    No full text
    corecore