458 research outputs found
Ground-state of graphene in the presence of random charged impurities
We calculate the carrier density dependent ground state properties of
graphene in the presence of random charged impurities in the substrate taking
into account disorder and interaction effects non-perturbatively on an equal
footing in a self-consistent theoretical formalism. We provide detailed
quantitative results on the dependence of the disorder-induced spatially
inhomogeneous two-dimensional carrier density distribution on the external gate
bias, the impurity density, and the impurity location. We find that the
interplay between disorder and interaction is strong, particularly at lower
impurity densities. We show that for the currently available typical graphene
samples, inhomogeneity dominates graphene physics at low (
cm) carrier density with the density fluctuations becoming larger than
the average density.Comment: Final version, accepted for publication in Phys. Rev. Let
Density-Functional Theory of Graphene Sheets
We outline a Kohn-Sham-Dirac density-functional-theory (DFT) scheme for
graphene sheets that treats slowly-varying inhomogeneous external potentials
and electron-electron interactions on an equal footing. The theory is able to
account for the the unusual property that the exchange-correlation contribution
to chemical potential increases with carrier density in graphene. Consequences
of this property, and advantages and disadvantages of using the DFT approach to
describe it, are discussed. The approach is illustrated by solving the
Kohn-Sham-Dirac equations self-consistently for a model random potential
describing charged point-like impurities located close to the graphene plane.
The influence of electron-electron interactions on these non-linear screening
calculations is discussed at length, in the light of recent experiments
reporting evidence for the presence of electron-hole puddles in nearly-neutral
graphene sheets.Comment: 11 pages, 9 figures, submitted. High-quality figures can be requested
to the author
Local density of states and scanning tunneling currents in graphene
We present exact analytical calculations of scanning tunneling currents in
locally disordered graphene using a multimode description of the microscope
tip. Analytical expressions for the local density of states (LDOS) are given
for energies beyond the Dirac cone approximation. We show that the LDOS at the
and sublattices of graphene are out of phase by implying that the
averaged LDOS, as one moves away from the impurity, shows no trace of the
(with the Fermi momentum) Friedel modulation. This means that a
STM experiment lacking atomic resolution at the sublattice level will not be
able of detecting the presence of the Friedel oscillations [this seems to be
the case in the experiments reported in Phys. Rev. Lett. {\bf 101}, 206802
(2008)]. The momentum maps of the LDOS for different types of impurities are
given. In the case of the vacancy, features are seen in these maps. In
all momentum space maps, and features are seen. The
features are different from what is seen around zero momentum. An
interpretation for these features is given. The calculations reported here are
valid for chemical substitution impurities, such as boron and nitrogen atoms,
as well as for vacancies. It is shown that the density of states close to the
impurity is very sensitive to type of disorder: diagonal, non-diagonal, or
vacancies. In the case of weakly coupled (to the carbon atoms) impurities, the
local density of states presents strong resonances at finite energies, which
leads to steps in the scanning tunneling currents and to suppression of the
Fano factor.Comment: 21 pages. Figures 6 and 7 are correctly displayed in this new versio
Mapping Dirac quasiparticles near a single Coulomb impurity on graphene
The response of Dirac fermions to a Coulomb potential is predicted to differ significantly from how non-relativistic electrons behave in traditional atomic and impurity systems. Surprisingly, many key theoretical predictions for this ultra-relativistic regime have not been tested. Graphene, a two-dimensional material in which electrons behave like massless Dirac fermions, provides a unique opportunity to test such predictions. Graphene’s response to a Coulomb potential also offers insight into important material characteristics, including graphene’s intrinsic dielectric constant, which is the primary factor determining the strength of electron–electron interactions in graphene. Here we present a direct measurement of the nanoscale response of Dirac fermions to a single Coulomb potential placed on a gated graphene device. Scanning tunnelling microscopy was used to fabricate tunable charge impurities on graphene, and to image electronic screening around them for a Q = +1|e| charge state. Electron-like and hole-like Dirac fermions were observed to respond differently to a Coulomb potential. Comparing the observed electron–hole asymmetry to theoretical simulations has allowed us to test predictions for how Dirac fermions behave near a Coulomb potential, as well as extract graphene’s intrinsic dielectric constant: ε[subscript g] = 3.0±1.0. This small value of ε[subscript g] indicates that electron–electron interactions can contribute significantly to graphene properties.United States. Office of Naval Research. Multidisciplinary University Research Initiative (Award N00014-09-1-1066)United States. Dept. of Energy. Office of Science (Contract DE-AC02-05CH11231)National Science Foundation (U.S.) (Award DMR-0906539
Electronic properties of bilayer and multilayer graphene
We study the effects of site dilution disorder on the electronic properties
in graphene multilayers, in particular the bilayer and the infinite stack. The
simplicity of the model allows for an easy implementation of the coherent
potential approximation and some analytical results. Within the model we
compute the self-energies, the density of states and the spectral functions.
Moreover, we obtain the frequency and temperature dependence of the
conductivity as well as the DC conductivity. The c-axis response is
unconventional in the sense that impurities increase the response for low
enough doping. We also study the problem of impurities in the biased graphene
bilayer.Comment: 36 pages, 42 figures, references adde
Resonant Visible Light Modulation with Graphene
Fast modulation and switching of light at visible and near-infrared (vis-NIR)
frequencies is of utmost importance for optical signal processing and sensing
technologies. No fundamental limit appears to prevent us from designing
wavelength-sized devices capable of controlling the light phase and intensity
at gigaherts (and even terahertz) speeds in those spectral ranges. However,
this problem remains largely unsolved, despite recent advances in the use of
quantum wells and phase-change materials for that purpose. Here, we explore an
alternative solution based upon the remarkable electro-optical properties of
graphene. In particular, we predict unity-order changes in the transmission and
absorption of vis-NIR light produced upon electrical doping of graphene sheets
coupled to realistically engineered optical cavities. The light intensity is
enhanced at the graphene plane, and so is its absorption, which can be switched
and modulated via Pauli blocking through varying the level of doping.
Specifically, we explore dielectric planar cavities operating under either
tunneling or Fabry-Perot resonant transmission conditions, as well as Mie modes
in silicon nanospheres and lattice resonances in metal particle arrays. Our
simulations reveal absolute variations in transmission exceeding 90% as well as
an extinction ratio >15 dB with small insertion losses using feasible material
parameters, thus supporting the application of graphene in fast electro-optics
at vis-NIR frequencies.Comment: 17 pages, 13 figures, 54 reference
- …