50 research outputs found
A Nonparametric Method for the Derivation of α/β Ratios from the Effect of Fractionated Irradiations
Multifractionation isoeffect data are commonly analysed under the assumption that cell survival determines the observed tissue or tumour response, and that it follows a linear-quadratic dose dependence. The analysis is employed to derive the α/β ratios of the linear-quadratic dose dependence, and different methods have been developed for this purpose. A common method uses the so-called Fe plot. A more complex but also more rigorous method has been introduced by Lam et al. (1979). Their method, which is based on numerical optimization procedures, is generalized and somewhat simplified in the present study. Tumour-regrowth data are used to explain the nonparametric procedure which provides α/β ratios without the need to postulate analytical expressions for the relationship between cell survival and regrowth delay
Detecting Bacterial Cell Viability in Few µL Solutions from Impedance Measurements on Silicon-Based Biochips
Using two different types of impedance biochips (PS5 and BS5) with ring top electrodes, a distinct change of measured impedance has been detected after adding 1–5 µL (with dead or live Gram-positive Lysinibacillus sphaericus JG-A12 cells to 20 µL DI water inside the ring top electrode. We relate observed change of measured impedance to change of membrane potential of L. sphaericus JG-A12 cells. In contrast to impedance measurements, optical density (OD) measurements cannot be used to distinguish between dead and live cells. Dead L. sphaericus JG-A12 cells have been obtained by adding 0.02 mg/mL of the antibiotics tetracycline and 0.1 mg/mL chloramphenicol to a batch with OD0.5 and by incubation for 24 h, 30 ◦C, 120 rpm in the dark. For impedance measurements, we have used batches with a cell density of 25.5 × 108 cells/mL (OD8.5) and 270.0 × 108 cells/mL (OD90.0). The impedance biochip PS5 can be used to detect the more resistive and less capacitive live L. sphaericus JG-A12 cells. Also, the impedance biochip BS5 can be used to detect the less resistive and more capacitive dead L. sphaericus JG-A12 cells. An outlook on the application of the impedance biochips for high-throughput drug screening, e.g., against multi-drug-resistant Grampositive bacteria, is given
Padded Helmet Shell Covers in American Football: A Comprehensive Laboratory Evaluation with Preliminary On-Field Findings
Protective headgear effects measured in the laboratory may not always
translate to the field. In this study, we evaluated the impact attenuation
capabilities of a commercially available padded helmet shell cover in the
laboratory and field. In the laboratory, we evaluated the efficacy of the
padded helmet shell cover in attenuating impact magnitude across six impact
locations and three impact velocities when equipped to three different helmet
models. In a preliminary on-field investigation, we used instrumented
mouthguards to monitor head impact magnitude in collegiate linebackers during
practice sessions while not wearing the padded helmet shell covers (i.e., bare
helmets) for one season and whilst wearing the padded helmet shell covers for
another season. The addition of the padded helmet shell cover was effective in
attenuating the magnitude of angular head accelerations and two brain injury
risk metrics (DAMAGE, HARM) across most laboratory impact conditions, but did
not significantly attenuate linear head accelerations for all helmets. Overall,
HARM values were reduced in laboratory impact tests by an average of 25% at 3.5
m/s (range: 9.7 - 39.6%), 18% at 5.5 m/s (range: -5.5 - 40.5%), and 10% at 7.4
m/s (range: -6.0 - 31.0%). However, on the field, no significant differences in
any measure of head impact magnitude were observed between the bare helmet
impacts and padded helmet impacts. Further laboratory tests were conducted to
evaluate the ability of the padded helmet shell cover to maintain its
performance after exposure to repeated, successive impacts and across a range
of temperatures. This research provides a detailed assessment of padded helmet
shell covers and supports the continuation of in vivo helmet research to
validate laboratory testing results.Comment: 49 references, 8 figure
The Vitamin D Receptor Is a Wnt Effector that Controls Hair Follicle Differentiation and Specifies Tumor Type in Adult Epidermis
We have investigated how Wnt and vitamin D receptor signals regulate epidermal differentiation. Many epidermal genes induced by β-catenin, including the stem cell marker keratin 15, contain vitamin D response elements (VDREs) and several are induced independently of TCF/Lef. The VDR is required for β-catenin induced hair follicle formation in adult epidermis, and the vitamin D analog EB1089 synergises with β-catenin to stimulate hair differentiation. Human trichofolliculomas (hair follicle tumours) are characterized by high nuclear β-catenin and VDR, whereas infiltrative basal cell carcinomas (BCCs) have high β-catenin and low VDR levels. In mice, EB1089 prevents β-catenin induced trichofolliculomas, while in the absence of VDR β-catenin induces tumours resembling BCCs. We conclude that VDR is a TCF/Lef-independent transcriptional effector of the Wnt pathway and that vitamin D analogues have therapeutic potential in tumors with inappropriate activation of Wnt signalling
Sequencing chemotherapy and radiotherapy in locoregional advanced breast cancer patients after mastectomy – a retrospective analysis
<p>Abstract</p> <p>Background</p> <p>Combined chemo- and radiotherapy are established in breast cancer treatment. Chemotherapy is recommended prior to radiotherapy but decisive data on the optimal sequence are rare. This retrospective analysis aimed to assess the role of sequencing in patients after mastectomy because of advanced locoregional disease.</p> <p>Methods</p> <p>A total of 212 eligible patients had a stage III breast cancer and had adjuvant chemotherapy and radiotherapy after mastectomy and axillary dissection between 1996 and 2004. According to concerted multi-modality treatment strategies 86 patients were treated sequentially (chemotherapy followed by radiotherapy) (SEQgroup), 70 patients had a sandwich treatment (SW-group) and 56 patients had simultaneous chemoradiation (SIM-group) during that time period. Radiotherapy comprised the thoracic wall and/or regional lymph nodes. The total dose was 45–50.4 Gray. As simultaneous chemoradiation CMF was given in 95.4% of patients while in sequential or sandwich application in 86% and 87.1% of patients an anthracycline-based chemotherapy was given.</p> <p>Results</p> <p>Concerning the parameters nodal involvement, lymphovascular invasion, extracapsular spread and extension of the irradiated region the three treatment groups were significantly imbalanced. The other parameters, e.g. age, pathological tumor stage, grading and receptor status were homogeneously distributed. Looking on those two groups with an equally effective chemotherapy (EC, FEC), the SEQ- and SW-group, the sole imbalance was the extension of LVI (57.1 vs. 25.6%, p < 0.0001).</p> <p>5-year overall- and disease free survival were 53.2%/56%, 38.1%/32% and 64.2%/50%, for the sequential, sandwich and simultaneous regime, respectively, which differed significantly in the univariate analysis (p = 0.04 and p = 0.03, log-rank test). Also the 5-year locoregional or distant recurrence free survival showed no significant differences according to the sequence of chemo- and radiotherapy. In the multivariate analyses the sequence had no independent impact on overall survival (p = 0.2) or disease free survival (p = 0.4). The toxicity, whether acute nor late, showed no significant differences in the three groups. The grade III/IV acute side effects were 3.6%, 0% and 3.5% for the SIM-, SW- and SEQ-group. By tendency the SIM regime had more late side effects.</p> <p>Conclusion</p> <p>No clear advantage can be stated for any radio- and chemotherapy sequence in breast cancer therapy so far. This could be confirmed in our retrospective analysis in high-risk patients after mastectomy. The sequential approach is recommended according to current guidelines considering a lower toxicity.</p
Effect of selective phosphodiesterase inhibitors on the rat eosinophil chemotactic response in vitro
Expression and pharmacological inhibition of TrkB and EGFR in glioblastoma
A member of the Trk family of neurotrophin receptors, tropomyosin receptor kinase B (TrkB, encoded by the NTRK2 gene) is an increasingly important target in various cancer types, including glioblastoma (GBM). EGFR is among the most frequently altered oncogenes in GBM, and EGFR inhibition has been tested as an experimental therapy. Functional interactions between EGFR and TrkB have been demonstrated. In the present study, we investigated the role of TrkB and EGFR, and their interactions, in GBM. Analyses of NTRK2 and EGFR gene expression from The Cancer Genome Atlas (TCGA) datasets showed an increase in NTRK2 expression in the proneural subtype of GBM, and a strong correlation between NTRK2 and EGFR expression in glioma CpG island methylator phenotype (G-CIMP+) samples. We showed that when TrkB and EGFR inhibitors were combined, the inhibitory effect on A172 human GBM cells was more pronounced than when either inhibitor was given alone. When U87MG GBM cells were xenografted into the flank of nude mice, tumor growth was delayed by treatment with TrkB and EGFR inhibitors, given alone or combined, only at specific time points. Intracranial GBM growth in mice was not significantly affected by drug treatments. Our findings indicate that correlations between NTRK2 and EGFR expression occur in specific GBM subgroups. Also, our results using cultured cells suggest for the first time the potential of combining TrkB and EGFR inhibition for the treatment of GBM