267 research outputs found
The [Y/Mg] clock works for evolved solar metallicity stars
Previously [Y/Mg] has been proven to be an age indicator for solar twins.
Here, we investigate if this relation also holds for helium-core-burning stars
of solar metallicity. High resolution and high signal-to-noise ratio (S/N)
spectroscopic data of stars in the helium-core-burning phase have been obtained
with the FIES spectrograph on the NOT 2.56m telescope and the HIRES
spectrograph on the Keck I 10 m telescope. They have been analyzed to determine
the chemical abundances of four open clusters with close to solar metallicity;
NGC 6811, NGC 6819, M67 and NGC 188. The abundances are derived from equivalent
widths of spectral lines using ATLAS9 model atmospheres with parameters
determined from the excitation and ionization balance of Fe lines. Results from
asteroseismology and binary studies were used as priors on the atmospheric
parameters, where especially the is determined to much higher
precision than what is possible with spectroscopy. It is confirmed that the
four open clusters are close to solar metallicity and they follow the [Y/Mg]
vs. age trend previously found for solar twins. The [Y/Mg] vs. age clock also
works for giant stars in the helium-core burning phase, which vastly increases
the possibilities to estimate the age of stars not only in the solar
neighborhood, but in large parts of the Galaxy, due to the brighter nature of
evolved stars compared to dwarfs.Comment: 5 pages, 3 figures, accepted for publication as a Letter to A&
Na I and H absorption features in the atmosphere of MASCARA-2b/KELT-20b
We have used the HARPS-North high resolution spectrograph (=115
000) at TNG to observe one transit of the highly irradiated planet
MASCARA-2b/KELT-20b. Using only one transit observation, we are able to clearly
resolve the spectral features of the atomic sodium (Na I) doublet and the
H line in its atmosphere, measuring absorption depths of
0.170.03 and 0.590.08 for a 0.75 passband,
respectively. These absorptions are corroborated with the transmission measured
from their respective transmission light curves, which show a large
Rossiter-McLaughlin effect. In case of H, this absorption corresponds
to an effective radius of =1.200.04. While the S/N of the
final transmission spectrum is not sufficient to adjust different temperature
profiles to the lines, we find that higher temperatures than the equilibrium
are needed to explain the lines contrast. Particularly, we find that the Na I
lines core require a temperature of T=4210180K and that H requires
T=4330520K. MASCARA-2b, like other planets orbiting A-type stars, receives
a large amount of UV energy from its host star. This energy excites the atomic
hydrogen and produces H absorption, leading to the expansion and
abrasion of the atmosphere. The study of other Balmer lines in the transmission
spectrum would allow the determination of the atmospheric temperature profile
and the calculation of the lifetime of the atmosphere. In the case of
MASCARA-2b, residual features are observed in the H and H lines,
but they are not statistically significant. More transit observations are
needed to confirm our findings in Na I and H, and to build up enough
S/N to explore the presence of H and H planetary absorptions.Comment: 14 pages, 12 figure
MASCARA-2 b: A hot Jupiter transiting the A-star HD185603
In this paper we present MASCARA-2 b, a hot Jupiter transiting the
A2 star HD 185603. Since early 2015, MASCARA has taken more than 1.6 million
flux measurements of the star, corresponding to a total of almost 3000 hours of
observations, revealing a periodic dimming in the flux with a depth of .
Photometric follow-up observations were performed with the NITES and IAC80
telescopes and spectroscopic measurements were obtained with the Hertzsprung
SONG telescope. We find MASCARA-2 b orbits HD 185603 with a period of
at a distance of , has a radius of and place a
upper limit on the mass of . HD 185603 is a
rapidly rotating early-type star with an effective temperature of
and a mass and radius of
, , respectively. Contrary
to most other hot Jupiters transiting early-type stars, the projected planet
orbital axis and stellar spin axis are found to be aligned with . The brightness of the host star and the high equilibrium
temperature, , of MASCARA-2 b make it a suitable target for
atmospheric studies from the ground and space. Of particular interest is the
detection of TiO, which has recently been detected in the similarly hot planets
WASP-33 b and WASP-19 b.Comment: 8 pages, 4 figures, Accepted for publication in A&
The K2-ESPRINT Project VI: K2-105 b, a Hot-Neptune around a Metal-rich G-dwarf
We report on the confirmation that the candidate transits observed for the
star EPIC 211525389 are due to a short-period Neptune-sized planet. The host
star, located in K2 campaign field 5, is a metal-rich ([Fe/H] = 0.260.05)
G-dwarf (T_eff = 543070 K and log g = 4.480.09), based on
observations with the High Dispersion Spectrograph (HDS) on the Subaru 8.2m
telescope. High-spatial resolution AO imaging with HiCIAO on the Subaru
telescope excludes faint companions near the host star, and the false positive
probability of this target is found to be < using the open source
vespa code. A joint analysis of transit light curves from K2 and additional
ground-based multi-color transit photometry with MuSCAT on the Okayama 1.88m
telescope gives the orbital period of P = 8.2669020.000070 days and
consistent transit depths of or . The transit depth corresponds to a planetary radius of , indicating that EPIC 211525389 b is a
short-period Neptune-sized planet. Radial velocities of the host star, obtained
with the Subaru HDS, lead to a 3\sigma\ upper limit of 90 on the mass of EPIC 211525389 b, confirming its planetary nature.
We expect this planet, newly named K2-105 b, to be the subject of future
studies to characterize its mass, atmosphere, spin-orbit (mis)alignment, as
well as investigate the possibility of additional planets in the system.Comment: 11 pages, 9 figures, 4 tables, PASJ accepte
Ages and fundamental properties of Kepler exoplanet host stars from asteroseismology
We present a study of 33 {\it Kepler} planet-candidate host stars for which
asteroseismic observations have sufficiently high signal-to-noise ratio to
allow extraction of individual pulsation frequencies. We implement a new
Bayesian scheme that is flexible in its input to process individual oscillation
frequencies, combinations of them, and average asteroseismic parameters, and
derive robust fundamental properties for these targets. Applying this scheme to
grids of evolutionary models yields stellar properties with median statistical
uncertainties of 1.2\% (radius), 1.7\% (density), 3.3\% (mass), 4.4\%
(distance), and 14\% (age), making this the exoplanet host-star sample with the
most precise and uniformly determined fundamental parameters to date. We assess
the systematics from changes in the solar abundances and mixing-length
parameter, showing that they are smaller than the statistical errors. We also
determine the stellar properties with three other fitting algorithms and
explore the systematics arising from using different evolution and pulsation
codes, resulting in 1\% in density and radius, and 2\% and 7\% in mass and age,
respectively. We confirm previous findings of the initial helium abundance
being a source of systematics comparable to our statistical uncertainties, and
discuss future prospects for constraining this parameter by combining
asteroseismology and data from space missions. Finally we compare our derived
properties with those obtained using the global average asteroseismic
observables along with effective temperature and metallicity, finding an
excellent level of agreement. Owing to selection effects, our results show that
the majority of the high signal-to-noise ratio asteroseismic {\it Kepler} host
stars are older than the Sun.Comment: 25 pages, 17 figures, MNRAS accepte
The frequency of transiting planetary systems around polluted white dwarfs
This paper investigates the frequency of transiting planetary systems around metal-polluted white dwarfs using high-cadence photometry from ULTRACAM and ULTRASPEC on the ground and space-based observations with TESS . Within a sample of 313 metal-polluted white dwarfs with available TESS light curves, two systems known to have irregular transits are blindly reco v ered by box-least-squares and LombâScargle analyses, with no new detections, yielding a transit fraction of 0 . 8 + 0 . 6 â0 . 4 per cent. Planet detection sensitivities are determined using simulated transit injection and reco v ery for all light curves, producing upper limit occurrences o v er radii from dwarf to Kronian planets, with periods from 1 h to 27 d. The dearth of short-period, transiting planets orbiting polluted white dwarfs is consistent with engulfment during the giant phases of stellar evolution, and modestly constrains dynamical re-injection of planets to the shortest orbital periods. Based on simple predictions of transit probability, where ( R â + R p ) /a 0 . 01, the findings here are nominally consistent with a model where 100 per cent of polluted white dwarfs have circumstellar debris near the Roche limit; ho we ver, the small sample size precludes statistical confidence in this result. Single transits are also ruled out in all light curves using a search for correlated outliers, providing weak constraints on the role of Oort-like comet clouds in white dwarf pollution
The K2-ESPRINT Project. I. Discovery of the Disintegrating Rocky Planet K2-22b with a Cometary Head and Leading Tail
We present the discovery of a transiting exoplanet candidate in the K2
Field-1 with an orbital period of 9.1457 hr: K2-22b. The highly variable
transit depths, ranging from 0\% to 1.3\%, are suggestive of a planet
that is disintegrating via the emission of dusty effluents. We characterize the
host star as an M-dwarf with K. We have obtained
ground-based transit measurements with several 1-m class telescopes and with
the GTC. These observations (1) improve the transit ephemeris; (2) confirm the
variable nature of the transit depths; (3) indicate variations in the transit
shapes; and (4) demonstrate clearly that at least on one occasion the transit
depths were significantly wavelength dependent. The latter three effects tend
to indicate extinction of starlight by dust rather than by any combination of
solid bodies. The K2 observations yield a folded light curve with lower time
resolution but with substantially better statistical precision compared with
the ground-based observations. We detect a significant "bump" just after the
transit egress, and a less significant bump just prior to transit ingress. We
interpret these bumps in the context of a planet that is not only likely
streaming a dust tail behind it, but also has a more prominent leading dust
trail that precedes it. This effect is modeled in terms of dust grains that can
escape to beyond the planet's Hill sphere and effectively undergo `Roche lobe
overflow,' even though the planet's surface is likely underfilling its Roche
lobe by a factor of 2.Comment: 22 pages, 16 figures. Final version accepted to Ap
K2-137 b: an Earth-sized planet in a 4.3-hour orbit around an M-dwarf
We report the discovery from K2 of a transiting terrestrial planet in an
ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in
only 4.3 hours, the second-shortest orbital period of any known planet, just 4
minutes longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a
combination of archival images, AO imaging, RV measurements, and light curve
modelling, we show that no plausible eclipsing binary scenario can explain the
K2 light curve, and thus confirm the planetary nature of the system. The
planet, whose radius we determine to be 0.89 +/- 0.09 Earth radii, and which
must have a iron mass fraction greater than 0.45, orbits a star of mass 0.463
+/- 0.052 Msol and radius 0.442 +/- 0.044 Rsol.Comment: 12 pages, 9 figures, accepted for publication in MNRA
The transiting multi-planet system HD3167: a 5.7 MEarth Super-Earth and a 8.3 MEarth mini-Neptune
HD3167 is a bright (V=8.9 mag) K0V star observed by the NASA's K2 space
mission during its Campaign 8. It has been recently found to host two small
transiting planets, namely, HD3167b, an ultra short period (0.96 d)
super-Earth, and HD3167c, a mini-Neptune on a relatively long-period orbit
(29.85 d). Here we present an intensive radial velocity follow-up of HD3167
performed with the FIES@NOT, [email protected], and HARPS-N@TNG spectrographs. We
revise the system parameters and determine radii, masses, and densities of the
two transiting planets by combining the K2 photometry with our spectroscopic
data. With a mass of 5.69+/-0.44 MEarth, radius of 1.574+/-0.054 REarth, and
mean density of 8.00(+1.0)(-0.98) g/cm^3, HD3167b joins the small group of
ultra-short period planets known to have a rocky terrestrial composition.
HD3167c has a mass of 8.33 (+1.79)(-1.85) MEarth and a radius of
2.740(+0.106)(-0.100) REarth, yielding a mean density of 2.21(+0.56)(-0.53)
g/cm^3, indicative of a planet with a composition comprising a solid core
surrounded by a thick atmospheric envelope. The rather large pressure scale
height (about 350 km) and the brightness of the host star make HD3167c an ideal
target for atmospheric characterization via transmission spectroscopy across a
broad range of wavelengths. We found evidence of additional signals in the
radial velocity measurements but the currently available data set does not
allow us to draw any firm conclusion on the origin of the observed variation.Comment: 18 pages, 11 figures, 5 table
- âŠ