242 research outputs found

    Abundance and stratification analysis of the CP star HD 103498

    Full text link
    Slow rotation and absence of strong mixing processes in atmospheres of chemically peculiar stars develop ideal conditions for the appearance of abundance anomalies through the mechanism of microscopic particle diffusion. This makes these objects look spectroscopically and photometrically different from their "normal" analogs. As a result, it is often difficult to accurately determine atmospheric parameters of these stars and special methods are needed for the consistent analysis of their atmospheres. The main aim of the present paper is to analyse atmospheric abundance and stratification of chemical elements in the atmosphere of the chemically peculiar star HD 103498. We find that two model atmospheres computed with individual and stratified abundances provide reasonable fit to observed spectroscopic and photometric indicators: Teff=9300 K, logg=3.5 and Teff=9500K, logg=3.6. It is shown that Mg has a large abundance gradient in the star's atmosphere with accumulation of Mg ions in the uppermost atmospheric layers, whereas Si demonstrates opposite behaviour with accumulation in deep layers. In addition, a detailed non-LTE analysis showed that none of Mg transitions under consideration is a subject of noticeable non-LTE effects. Comparing observed photometry transformed to physical units we estimated the radius of HD 103498 to be between R=(4.56 +/- 0.77)Rsun for Teff=9300K, logg=3.5 and R=(4.39 +/- 0.75)Rsun for Teff=9500K, logg=3.6 models respectively. We note that the lack of suitable observations in absolute units prevents us to uniquely determine the Teff of the star at the current stage of analysis.Comment: 9 pages, 7 figures and 3 tables, accepted for publication in MNRA

    Pushing the limit of instrument capabilities

    Full text link
    Chemically Peculiar (CP) stars have been subject of systematic research since more than 50 years. With the discovery of pulsation of some of the cool CP stars, the availability of advanced spectropolarimetric instrumentation and high signal- to-noise, high resolution spectroscopy, a new era of CP star research emerged about 20 years ago. Together with the success in ground-based observations, new space projects are developed that will greatly benefit for future investigations of these unique objects. In this contribution we will give an overview of some interesting results obtained recently from ground-based observations and discuss on future outstanding Gaia space mission and its impact on CP star research.Comment: Joint Discussion 04, Secsion 1, To appear in Highlights of Astronomy, Proc. of the XXVIIth IAU General Assembly, Rio de Janeiro, Brazil, August 2009, 9 page

    On the influence of Stark broadening on Si I lines in stellar atmospheres

    Full text link
    We study the influence of Stark broadening and stratification effects on Si\i lines in the rapidly oscillating (roAp) star 10 Aql, where the Si\i 6142.48 \AA and 6155.13 \AA lines are asymmetrical and shifted. First we have calculated Stark broadening parameters using the semiclassical perturbation method for three Si\i lines: 5950.2 \AA, 6142.48 \AA and 6155.13 \AA. We revised the synthetic sp$ calculation code taking into account both Stark width and shift for these lines. From the comparison of our calculations with the observations we found that Stark broadening + the stratification effect can explain asymmetry of the Si\i 6142.48 \AA and 6155.13 \AA lines in the atmospere of roAp star 10 Aql.Comment: Accepted to A&

    Chemical stratification in the atmosphere of Ap star HD 133792. Regularized solution of the vertical inversion problem

    Full text link
    High spectral resolution studies of cool Ap stars reveal conspicuous anomalies of the shape and strength of many absorption lines. This is a signature of large atmospheric chemical gradients produced by the selective radiative levitation and gravitational settling of chemical species. Here we present a new approach to mapping the vertical chemical structures in stellar atmospheres. We have developed a regularized chemical inversion procedure that uses all information available in high-resolution stellar spectra. The new technique for the first time allowed us to recover chemical profiles without making a priori assumptions about the shape of chemical distributions. We have derived average abundances and applied the vertical inversion procedure to the high-resolution VLT UVES spectra of the weakly magnetic, cool Ap star HD 133792. Our analysis yielded improved estimates of the atmospheric parameters of HD 133792. We show that this star has negligible vsini and the mean magnetic field modulus =1.1+/-0.1 kG. We have derived average abundances for 43 ions and obtained vertical distributions of Ca, Si, Mg, Fe, Cr, and Sr. All these elements except Mg show high overabundance in the deep layers and solar or sub-solar composition in the upper atmosphere of HD 133792. In contrast, the Mg abundance increases with height. We find that transition from the metal-enhanced to metal-depleted zones typically occurs in a rather narrow range of depths in the atmosphere of HD 133792. Based on the derived photospheric abundances, we conclude that HD 133792 belongs to the rare group of evolved cool Ap stars, which possesses very large Fe-peak enhancement, but lacks a prominent overabundance of the rare-earth elements.Comment: Accepted by A&A; 12 pages, 9 figure
    corecore