939 research outputs found
Towards a gauge-polyvalent Numerical Relativity code
The gauge polyvalence of a new numerical code is tested, both in
harmonic-coordinate simulations (gauge-waves testbed) and in
singularity-avoiding coordinates (simple Black-Hole simulations, either with or
without shift). The code is built upon an adjusted first-order
flux-conservative version of the Z4 formalism and a recently proposed family of
robust finite-difference high-resolution algorithms. An outstanding result is
the long-term evolution (up to 1000M) of a Black-Hole in normal coordinates
(zero shift) without excision.Comment: to appear in Physical Review
Plasma flow past a two-dimensional magnetic dipole
Plasma flow past a two dimensional magnetic dipol
Efficient implementation of finite volume methods in Numerical Relativity
Centered finite volume methods are considered in the context of Numerical
Relativity. A specific formulation is presented, in which third-order space
accuracy is reached by using a piecewise-linear reconstruction. This
formulation can be interpreted as an 'adaptive viscosity' modification of
centered finite difference algorithms. These points are fully confirmed by 1D
black-hole simulations. In the 3D case, evidence is found that the use of a
conformal decomposition is a key ingredient for the robustness of black hole
numerical codes.Comment: Revised version, 10 pages, 6 figures. To appear in Phys. Rev.
Distribution of periphytic diatoms in the rivers of the Lake Ladoga basin (Northwestern Russia).
Relationships between distribution of periphytic diatoms and environmental variables in 19 rivers of the Lake Ladoga basin (Northwestern Russia) were examined using gradient
analysis. On the basis of geology and river water chemistry, the Lake Ladoga basin could be separated into twomain parts, the northern and the southern sub-basin. The rivers in the northern sub-basin are slightly acidic and low in conductivity (mean value 53 mS cm–1); the rivers in the southern sub-basin have neutral to slightly alkaline waters with higher conductivities (mean value 168 mS cm–1). A detrended correspondence analysis (DCA)defined two groups of rivers generally corresponding to the two main parts of the Lake Ladoga basin. Fragilaria capucina var. rumpens, Frustulia saxonica and Tabellaria flocculosa were the typical species for the northern sub-basin, whereas Cocconeis placentula var. euglypta, Ulnaria ulna and Gomphonema parvulum were characteristic species
for the southern sub-basin. A canonical correspondence analysis (CCA) identified conductivity, pH, bicarbonate, total phosphorus and water colour as the most important
environmental variables related to changes in assemblage structure. Both DCA and CCA ordination showed that conductivity related to geology was the most important variable,while concentration of total phosphorus was the second most important variable.Weighted averaging was used to infer total phosphorus from relative biomass of diatoms. The predictive ability of the inference model was sufficiently strong with r2 = 0.71 and RMSEP =
1.9 mg L–1. These results strongly support the use of a diatom-based inference phosphorus model for indicating eutrophication in the rivers of the Lake Ladoga basin
Grand potential in thermodynamics of solid bodies and surfaces
Using the chemical potential of a solid in a dissolved state or the
corresponding component of the chemical potential tensor at equilibrium with
the solution, a new concept of grand thermodynamic potential for solids has
been suggested. This allows generalizing the definition of Gibbs' quantity
(surface work often called the solid-fluid interfacial free energy) at
a planar surface as an excess grand thermodynamic potential per unit surface
area that (1) does not depend on the dividing surface location and (2) is
common for fluids and solids.Comment: 6 page
- …