96 research outputs found

    Triplet Excitation and Electroluminescence from a Supramolecular Monolayer Embedded in a Boron Nitride Tunnel Barrier

    Get PDF
    © 2019 American Chemical Society. We show that ordered monolayers of organic molecules stabilized by hydrogen bonding on the surface of exfoliated few-layer hexagonal boron nitride (hBN) flakes may be incorporated into van der Waals heterostructures with integral few-layer graphene contacts forming a molecular/two-dimensional hybrid tunneling diode. Electrons can tunnel through the hBN/molecular barrier under an applied voltage VSD, and we observe molecular electroluminescence from an excited singlet state with an emitted photon energy hν > eVSD, indicating upconversion by energies up to ∼1 eV. We show that tunneling electrons excite embedded molecules into singlet states in a two-step process via an intermediate triplet state through inelastic scattering and also observe direct emission from the triplet state. These heterostructures provide a solid-state device in which spin-triplet states, which cannot be generated by optical transitions, can be controllably excited and provide a new route to investigate the physics, chemistry, and quantum spin-based applications of triplet generation, emission, and molecular photon upconversion

    van der Waals-induced chromatic shifts in hydrogen-bonded two-dimensional porphyrin arrays on boron nitride

    Get PDF
    The fluorescence of a two-dimensional supramolecular network of 5,10,15,20-tetrakis(4-carboxylphenyl)porphyrin (TCPP) adsorbed on hexagonal boron nitride (hBN) is red shifted due to, primarily, adsorbate–substrate van der Waals interactions. TCPP is deposited from solution on hBN and forms faceted islands with typical dimensions of 100 nm and either square or hexagonal symmetry. The molecular arrangement is stabilized by in-plane hydrogen bonding as determined by a combination of molecular resolution atomic force microscopy performed under ambient conditions and density functional theory; a similar structure is observed on MoS2 and graphite. The fluorescence spectra of submonolayers of TCPP on hBN are red-shifted by ∼30 nm due to the distortion of the molecule arising from van der Waals interactions, in agreement with time-dependent density functional theory calculations. Fluorescence intensity variations are observed due to coherent partial reflections at the hBN interface, implying that such hybrid structures have potential in photonic applications

    Height dependent molecular trapping in stacked cyclic porphyrin nanorings

    Get PDF
    Stacked layers of cyclic porphyrin nanorings constitute nanoscale receptacles with variable height and diameter which preferentially adsorb sublimed molecules. Using scanning tunnelling microscopy we determine the filling capacity of these nanoring traps, and the dependence of adsorbate capture on stack height and diameter

    KLRF1, a novel marker of CD56bright NK cells, predicts improved survival for patients with locally advanced bladder cancer

    Get PDF
    Background Bladder tumor-infiltrating CD56bright NK cells are more tumor cytotoxic than their CD56dim counterparts. Identification of NK cell subsets is labor-intensive and has limited utility in the clinical setting. Here, we sought to identify a surrogate marker of bladder CD56bright NK cells and to test its prognostic significance. Methods CD56bright and CD56dim NK cells were characterized with the multiparametric flow (n = 20) and mass cytometry (n = 21) in human bladder tumors. Transcriptome data from bladder tumors (n = 351) profiled by The Cancer Genome Atlas (TCGA) were analyzed. The expression levels of individual markers in intratumoral CD56bright and CD56dim NK cells were visualized in tSNE plots. Expressions of activation markers were also compared between Killer Cell Lectin-Like Receptor Subfamily F Member 1 (KLRF1)+ and KLRF1− NK cells. Results Intratumoral CD56bright NK cells displayed a more activated phenotype compared to the CD56dim subset. Multiple intratumoral cell types expressed CD56, including bladder tumor cells and nonspecific intratumoral CD56 expression was associated with worse patient survival. Thus, an alternative to CD56 as a marker of CD56bright NK cells was sought. The activation receptor KLRF1 was significantly increased on CD56bright but not on CD56dim NK cells. Intratumoral KLRF1+ NK cells were more activated and expressed higher levels of activation molecules compared with KLRF1− NK cells, analogous to the distinct effector function of NK cells across CD56 expression. High intratumoral KLRF1 was associated with improved recurrence-free survival (hazard ratio [HR] 0.53, p = 0.01), cancer-specific survival (HR 0.47, p = 0.02), and overall survival (HR 0.54, p = 0.02) on multivariable analyses that adjusted for clinical and pathologic variables. Conclusions KLRF1 is a promising prognostic marker in bladder cancer and may guide treatment decisions upon validation

    Fluorescence and Electroluminescence of J-Aggregated Polythiophene Monolayers on Hexagonal Boron Nitride

    Get PDF
    The photophysics of a semiconducting polymer is manipulated through molecular self-assembly on an insulating surface. Adsorption of polythiophene (PT) monolayers on hexagonal boron nitride (hBN) leads to a structurally induced planarization and a rebalancing of inter- and intrachain excitonic coupling. This conformational control results in a dominant 0–0 photoluminescence peak and a reduced Huang–Rhys factor, characteristic of J-type aggregates, and optical properties which are significantly different to both PT thin films and single polymer strands. Adsorption on hBN also provides a route to explore electroluminescence from PT monolayers though incorporation into hybrid van der Waals heterostructures whereby the polymer monolayer is embedded within a hBN tunnel diode. In these structures we observe up-converted singlet electroluminescence from the PT monolayer, with an excitation mechanism based upon inelastic electron scattering. We argue that surface adsorption provides a methodology for the study of fundamental optoelectronic properties of technologically relevant polymers

    Mechanical stiffening of porphyrin nanorings through supramolecular columnar stacking

    Get PDF
    Solvent-induced aggregates of nanoring cyclic polymers may be transferred by electrospray deposition to a surface where they adsorb as threedimensional columnar stacks. The observed stack height varies from single rings to four stacked rings with a layer spacing of 0.32 ± 0.04 nm as measured using scanning tunneling microscopy. The flexibility of the nanorings results in distortions from a circular shape, and we show, through a comparison withMonte Carlo simulations, that the bending stiffness increases linearly with the stack height. Our results show that noncovalent interactions may be used to control the shape and mechanical properties of artificial macromolecularaggregates offering a new route to solvent-induced control of two-dimensional supramolecular organization

    Bimolecular porous supramolecular networks deposited from solution on layered materials: graphite, boron nitride and molybdenum disulphide

    Get PDF
    A two-dimensional porous network formed from perylene tetracarboxylic diimide (PTCDI) and melamine may be deposited from solution on the surfaces of highly oriented pyrolytic graphite (HOPG), hexagonal boron nitride (hBN) and molybdenum disulphide (MoS2). Images acquired using high resolution atomic force microscopy (AFM) operating under ambient conditions have revealed that the network forms extended orderedmonolayers (41 lm2) on HOPG and hBN whereas on MoS2 much smaller islands are observed

    5-α reductase inhibitors and prostate cancer prevention: where do we turn now?

    Get PDF
    With the lifetime risk of being diagnosed with prostate cancer so great, an effective chemopreventive agent could have a profound impact on the lives of men. Despite decades of searching for such an agent, physicians still do not have an approved drug to offer their patients. In this article, we outline current strategies for preventing prostate cancer in general, with a focus on the 5-α-reductase inhibitors (5-ARIs) finasteride and dutasteride. We discuss the two landmark randomized, controlled trials of finasteride and dutasteride, highlighting the controversies stemming from the results, and address the issue of 5-ARI use, including reasons why providers may be hesitant to use these agents for chemoprevention. We further discuss the recent US Food and Drug Administration ruling against the proposed new indication for dutasteride and the change to the labeling of finasteride, both of which were intended to permit physicians to use the drugs for chemoprevention. Finally, we discuss future directions for 5-ARI research
    • …
    corecore