5,732 research outputs found

    Wave and Particle Limit for Multiple Barrier Tunneling

    Full text link
    The particle approach to one-dimensional potential scattering is applied to non relativistic tunnelling between two, three and four identical barriers. We demonstrate as expected that the infinite sum of particle contributions yield the plane wave results. In particular, the existence of resonance/transparency for twin tunnelling in the wave limit is immediately obvious. The known resonances for three and four barriers are also derived. The transition from the wave limit to the particle limit is exhibit numerically.Comment: 15 pages, 3 figure

    Sacrificing Accuracy for Reduced Computation: Cascaded Inference Based on Softmax Confidence

    Full text link
    We study the tradeoff between computational effort and accuracy in a cascade of deep neural networks. During inference, early termination in the cascade is controlled by confidence levels derived directly from the softmax outputs of intermediate classifiers. The advantage of early termination is that classification is performed using less computation, thus adjusting the computational effort to the complexity of the input. Moreover, dynamic modification of confidence thresholds allow one to trade accuracy for computational effort without requiring retraining. Basing of early termination on softmax classifier outputs is justified by experimentation that demonstrates an almost linear relation between confidence levels in intermediate classifiers and accuracy. Our experimentation with architectures based on ResNet obtained the following results. (i) A speedup of 1.5 that sacrifices 1.4% accuracy with respect to the CIFAR-10 test set. (ii) A speedup of 1.19 that sacrifices 0.7% accuracy with respect to the CIFAR-100 test set. (iii) A speedup of 2.16 that sacrifices 1.4% accuracy with respect to the SVHN test set

    Building irregularity issues and architectural design in seismic areas

    Get PDF

    Crack roughness and avalanche precursors in the random fuse model

    Get PDF
    We analyze the scaling of the crack roughness and of avalanche precursors in the two dimensional random fuse model by numerical simulations, employing large system sizes and extensive sample averaging. We find that the crack roughness exhibits anomalous scaling, as recently observed in experiments. The roughness exponents (ζ\zeta, ζloc\zeta_{loc}) and the global width distributions are found to be universal with respect to the lattice geometry. Failure is preceded by avalanche precursors whose distribution follows a power law up to a cutoff size. While the characteristic avalanche size scales as s0LDs_0 \sim L^D, with a universal fractal dimension DD, the distribution exponent τ\tau differs slightly for triangular and diamond lattices and, in both cases, it is larger than the mean-field (fiber bundle) value τ=5/2\tau=5/2

    Reversible and Irreversible Spacetime Thermodynamics for General Brans-Dicke Theories

    Full text link
    We derive the equations of motion for Palatini F(R) gravity by applying an entropy balance law T dS= \delta Q+\delta N to the local Rindler wedge that can be constructed at each point of spacetime. Unlike previous results for metric F(R), there is no bulk viscosity term in the irreversible flux \delta N. Both theories are equivalent to particular cases of Brans-Dicke scalar-tensor gravity. We show that the thermodynamical approach can be used ab initio also for this class of gravitational theories and it is able to provide both the metric and scalar equations of motion. In this case, the presence of an additional scalar degree of freedom and the requirement for it to be dynamical naturally imply a separate contribution from the scalar field to the heat flux \delta Q. Therefore, the gravitational flux previously associated to a bulk viscosity term in metric F(R) turns out to be actually part of the reversible thermodynamics. Hence we conjecture that only the shear viscosity associated with Hartle-Hawking dissipation should be associated with irreversible thermodynamics.Comment: 12 pages, 1 figure; v2: minor editing to clarify Section III, fixed typos; v3: fixed typo

    Statistical properties of fracture in a random spring model

    Get PDF
    Using large scale numerical simulations we analyze the statistical properties of fracture in the two dimensional random spring model and compare it with its scalar counterpart: the random fuse model. We first consider the process of crack localization measuring the evolution of damage as the external load is raised. We find that, as in the fuse model, damage is initially uniform and localizes at peak load. Scaling laws for the damage density, fracture strength and avalanche distributions follow with slight variations the behavior observed in the random fuse model. We thus conclude that scalar models provide a faithful representation of the fracture properties of disordered systems.Comment: 12 pages, 17 figures, 1 gif figur

    Effect of Disorder and Notches on Crack Roughness

    Get PDF
    We analyze the effect of disorder and notches on crack roughness in two dimensions. Our simulation results based on large system sizes and extensive statistical sampling indicate that the crack surface exhibits a universal local roughness of ζloc=0.71\zeta_{loc} = 0.71 and is independent of the initial notch size and disorder in breaking thresholds. The global roughness exponent scales as ζ=0.87\zeta = 0.87 and is also independent of material disorder. Furthermore, we note that the statistical distribution of crack profile height fluctuations is also independent of material disorder and is described by a Gaussian distribution, albeit deviations are observed in the tails.Comment: 6 pages, 6 figure
    corecore