183 research outputs found

    Interactions between nanoparticles in nanosuspension

    Get PDF
    Nanoparticles are particles with a characteristic dimension below 100 nm. The properties of nanoparticles differ substantially from those of “big” colloidal particles (size bigger than 1 m) because radius of surface forces, which is around 100 nm, is greater than or comparable with the nanoparticles size. The latter means that each nanoparticle could be completely covered by the surface forces of the neighbouring particles at small enough separation. It also means that the well-known Derjaguin approximation cannot be applied directly and some modifications are required. Pairwise interaction between nanoparticles can be used only at an extremely low volume fraction of nanoparticles (below some critical volume fraction, which is ~0.02%), and above this concentration a new theory based on many- particle interactions should be applied, which is yet to be developed. Some recent progress in the area of interaction between nanoparticles is reviewed and the properties of nanosuspensions based on interaction between nanoparticles are described. The authors have not attempted to cover all available literature in the area but instead have tried to underline the fundamental problems in the area which need to be addressed

    Fluoro- vs hydrocarbon surfactants: Why do they differ in wetting performance?

    Get PDF
    AbstractFluorosurfactants are the most effective compounds to lower the surface tension of aqueous solutions, but their wetting properties as related to low energy hydrocarbon solids are inferior to hydrocarbon trisiloxane surfactants, although the latter demonstrate higher surface tension in aqueous solutions. To explain this inconsistency available data on the adsorption of fluorosurfactants on liquid/vapour, solid/liquid and solid/vapour interfaces are discussed in comparison to those of hydrocarbon surfactants. The low free energy of adsorption of fluorosurfactants on hydrocarbon solid/water interface should be of a substantial importance for their wetting properties

    Mean-field Density Functional Theory of a Three-Phase Contact Line

    Full text link
    A three-phase contact line in a three-phase fluid system is modeled by a mean-field density functional theory. We use a variational approach to find the Euler-Lagrange equations. Analytic solutions are obtained in the two-phase regions at large distances from the contact line. We employ a triangular grid and use a successive over-relaxation method to find numerical solutions in the entire domain for the special case of equal interfacial tensions for the two-phase interfaces. We use the Kerins-Boiteux formula to obtain a line tension associated with the contact line. This line tension turns out to be negative. We associate line adsorption with the change of line tension as the governing potentials change.Comment: 14 pages, 13 figures, submitted to PR

    Kinetics of Wetting and Spreading of Droplets over Various Substrates

    Get PDF
    There has been a substantial increase in the number of publications in the field of wetting and spreading since 2010. This increase in the rate of publications can be attributed to the broader application of wetting phenomena in new areas. It is impossible to review such a huge number of publications; that is, some topics in the field of wetting and spreading are selected to be discussed below. These topics are as follows: (i) Contact angle hysteresis on smooth homogeneous solid surfaces via disjoining/conjoining pressure. It is shown that the hysteresis contact angles can be calculated via disjoining/conjoining pressure. The theory indicates that the equilibrium contact angle is closer to a static receding contact angle than to a static advancing contact angle. (ii) The wetting of deformable substrates, which is caused by surface forces action in the vicinity of the apparent three-phase contact line, leading to a deformation on the substrate. (iii) The kinetics of wetting and spreading of non-Newtonian liquid (blood) over porous substrates. We showed that in spite of the enormous complexity of blood, the spreading over porous substrate can be described using a relatively simple model: a power low-shear-thinning non-Newtonian liquid. (iv) The kinetics of spreading of surfactant solutions. In this part, new results related to various surfactant solution mixtures (synergy and crystallization) are discussed, which shows some possible direction for the future revealing of superspreading phenomena. (v) The kinetics of spreading of surfactant solutions over hair. Fundamental problems to be solved are identified

    Effects of additives on the foaming properties of Aculyn 22 and Aculyn 33 polymeric solutions

    Get PDF
    AbstractFoam stability and foam drainage of aqueous solutions of Aculyn™ 22 and Aculyn™ 33 polymers are considered. Measurements of both bulk and surface rheology of A22 and A33 solutions in the presence of sodium chloride and iso-propanol are performed for the polymer concentrations 1–1.5%. Properties of mixtures of these polymers are investigated. Addition of iso-propanol does not change bulk properties of the A33 solutions but decreases their surface viscoelasticity. Addition of iso-propanol decreases bulk viscosity as well as the bulk and surface viscoelastic moduli of the A22 solutions and moves the region of pronouncing shear thinning behaviour to the smaller shear rates. The last effect depends on the salt concentration. Solutions of both polymers form foams, which are stable during several hours. Characteristic time of foam drainage increases with the polymer concentration and decreases with the salt concentration and iso-propanol content. The decrease in the surface viscoelastic modulus results in faster foam coarsening and lower foam stability

    Foams built up by non-Newtonian polymeric solutions: Free drainage

    Get PDF
    A mathematical model of free drainage of foam built up by a power-law non-Newtonian liquid is developed. The theory predictions are compared with the experimental data on the drainage of foams formed using commercially available Aculyn™22 and Aculyn™33 polymeric solutions. The rheological parameters of the polymeric solutions were independently measured and used in the calculations. The deduced dimensionless equations were solved using finite element method with appropriate boundary conditions. The numerical simulations show that the decrease in the foam height and liquid content is very fast in the very beginning of the drainage; however, it reaches a steady state at longer time. The predicted values of the time evolution of the foam height and liquid content are in good agreement with the measured experimental data

    Equilibrium of droplets on a deformable substrate: Influence of disjoining pressure

    Get PDF
    © 2016 Elsevier B.V.Equilibrium of liquid droplets on soft deformable substrates is investigated. Disjoining pressure action in the vicinity of the apparent three phase contact line is taken into account. It is shown that the combined disjoining and capillary pressure action determine the substrate deformation. A simplified linear disjoining pressure isotherm and simple Winkler's model to account for the substrate deformation are used which allows deducing analytical solutions for both the liquid profile and the substrate deformation. The apparent equilibrium contact angle of the liquid droplet with the deformable substrate is calculated and its dependency on the system parameters is investigated
    • …
    corecore