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Abstract 

A mathematical model of free drainage of foam built up by a power-law non-Newtonian 

liquid is developed. The theory predictions are compared with the experimental data on the 

drainage of foams formed using commercially available AculynTM22 and AculynTM33 

polymeric solutions. The rheological parameters of the polymeric solutions were 

independently measured and used in the calculations. The deduced dimensionless equations 

were solved using finite element method with appropriate boundary conditions. The 

numerical simulations show that the decrease in the foam height and liquid content is very 

fast in the very beginning of the drainage; however, it reaches a steady state at longer time. 

The predicted values of the time evolution of the foam height and liquid content are in good 

agreement with the measured experimental data.  
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1. Introduction 

Foams are multiphase colloidal systems, which are formed by trapping a gas in a 

continuous phase (liquid or solid).  Foams are widely used in food, pharmacy, personal care 

products, flotation and other separation processes, firefighting, petroleum and gas industries 

[1-3]. They pop up in lightweight mechanical materials and affect absorbing components in 

cars, heat exchangers and textured wallpapers.  

A flow of liquid in between the gas bubbles through Plateau borders, nodes and films in 

foam driven by capillarity and/or gravity is referred to as drainage. In the case of foams built 

up by Newtonian liquids, equations of drainage were deduced using the combination of the 

liquid momentum and mass balance equations [4-8]. The drainage equations in the case of 

Newtonian liquids have been solved numerically and/or analytically in different prototype 

situations including free drainage [4-9], where liquid drains out of a foam due to the influence 

of gravity and capillarity; wetting of a dry foam [10, 11], where a dry foam is in contact with 

a liquid at its base; forced drainage [8, 9, 12-14], where liquid is added to the top of foam 

column producing a traveling wave; and pulsed drainage [8, 15-17], where a small volume of 

liquid is injected to the top of a foam and left to evolve. A new type of these situations is the 

case of foam drainage placed on a porous substrate [18, 19], where foam is deposited on a 

porous substrate and the presence of unsaturated pores inside the porous substrate results in 

an imbibition of liquid from the foam into the unsaturated pores. 

Foams are conventionally stabilised by surfactants; however, polymers (polyelectrolytes) 

grow in popularity during the last decade as alternative stabilising additives to foaming 

solutions [20]. Polymers can adsorb at the interfaces and stabilize foam films like low-

molecular surfactants. The use of polymers in foaming solutions has found increasing 

benefits in different industrial applications. For example, polymer enhanced foams are 



increasingly being utilised for reservoir recovery in petroleum industry [21-23]. Polymers are 

also used in firefighting foams on polar fuels to prevent the foam from collapse [24]. In 

addition, polymer stabilized hair colouring foams were recently patented in Ref. [25] to 

provide improvements in colour delivery.  

Understanding the rate of foam drainage/liquid release from foam is of great importance in 

various industries because it shows the rate of delivery of active components to the target 

places. Incorporating polymers into foaming solutions can affect the rate of drainage and thus, 

efficiency of the application. Addition of polymers often increases the viscosity of foaming 

solutions and therefore it affects the kinetics of foam drainage and the rate of inter-bubble gas 

diffusion [26-28]. For example, polymers used in firefighting foams can significantly 

lengthen the drainage time by viscosifying the aqueous phase. In general polymeric additives 

make the foaming solution shear thinning non-Newtonian fluids.   

To date only a few foam drainage studies have been devoted to non-Newtonian fluids, 

such as polymer solutions [29, 30], while the majority of researches deal with Newtonian 

liquids, such as water, glycerin or oil. Despite intensive research in the field, to the best of 

our knowledge, only semi-empirical approaches have been developed so far and there is no 

comprehensive theory of foam drainage of non-Newtonian solutions. In our previous papers 

[26, 27, 31] the influence of rheology of commercially available polymers AculynTM22 (A22) 

and AculynTM33 (A33) on the free foam drainage was investigated experimentally and the 

results of the properties modification (polymer type, concentration, mixtures, salt and iso-

propanol addition) of A22 and A33 polymeric solutions were presented. Below a theory of 

foam drainage is presented for the non-Newtonian polymeric solutions in the case of free 

drainage and its results are compared with experimental data. 

 



2. Materials and methods 

A22 is a hydrophobically-modified alkali soluble emulsion (HASE) and A33 is an anionic 

alkali polymer emulsion, water soluble, lightly crosslinked. Polymer emulsions were supplied 

by Dow. Both polymers are soluble in water at high pH (~12) and thus aqueous solutions of 

them were prepared by neutralising the stock polymer emulsions with a 2% ammonia 

solution in ultra-pure water produced by Millipore Q, with ascorbic and citric acids added 

(0.2 mass % each). NaCl was added to solutions in the range of 0-1.3 M concentrations. This 

composition represents the common system utilised in cosmetic products such as hair 

colourants where the ionic strength can be controlled by the added salt. The details about the 

preparation of polymeric solutions can be found in Refs. [26, 27].  

The rheometer AR 1000-N, TA Instruments with the cone and plate geometry (4 cm 

diameter, cone of 1ƕ59' and truncation of 56 µm) was used for the rheology measurements. 

Peltier plate was used to keep the temperature constant at 20ƕC. In the oscillating mode the 

strain sweep measurements have been performed in the range of 0.1–10 at frequency 1 Hz 

and in the flow mode shear rate measurements have been made at the values higher than 3 s−1 

which corresponds to the local shear rates during the foam drainage [29]. The experimental 

error was lower than 5% at measuring probes taken from the same sample; however, the 

difference between individual samples of the same composition was higher, roughly 10%. 

Surface tension measurements have been performed by the Drop shape analyser DSA100, 

Kruss, Germany. Buoyant air bubble was formed at the tip of the hooked capillary immersed 

in the cuvette containing a polymer solution in these experiments. 

Foaming experiments have been performed in a home-made glass column of 380 mm 

height and 43 mm inner diameter. The foaming head, fitted at the bottom of the column, 

consisted of 19 capillaries of 0.18 mm inner diameter for a gas supply. The foaming gas was 



air. To study the kinetics of foam drainage, a foaming liquid was poured into the column to 

the height of about H0=45 mm and bubbling was started at a constant flow rate. Bubbling 

was stopped after the foam height increased to about 150 mm. Time evolution of the height 

of the foam, H2-H1 (Fig. 1) and the liquid under the foam, H-H2, (Fig. 1) were measured 

during the experiments. The average liquid volume fraction inside the foam during the 

drainage was calculated as (H0-(H-H2))/(H2-H1) and results of calculations are reported below. 

The produced foam was quite uniform (see Supplementary material Video 1) and the 

variation of bubble size due to coarsening was negligible during the drainage (bubble 

coarsening parameter C was less than 10% for the solutions used in the experiments) [27]. 

Accordingly, an average bubble size was determined for each foam drainage experiment by 

analysing the pictures taken from the whole column during the drainage. Each experimental 

run was repeated at least twice and the average values are reported below. The details of 

foam drainage experiments can be found in Refs. [26, 27]. 

3. Theory 

Let us consider foam composed of bubbles of uniform size and produced from polymeric 

solutions in a column of height H (Fig. 1). Drainage occurs in the vertical direction along the 

co-ordinate axis z directed downward, with z=0 at the top of the column. Time evolutions of 

the foam height and free liquid under the foam are H2(t)-H1(t) and H-H2(t), respectively (Fig. 

1). It is assumed below that the bubble size remains constant during the drainage, the 

dissipation occurs in the Plateau borders only and the contribution of the liquid flow in the 

films and nodes is neglected. 



 

Fig. 1 Schematic of free foam drainage experiment 

It was determined in Ref. [27] (and shown below) that the polymeric solutions of A22 and 

A33 are non-Newtonian power-law liquids, which show a shear-thinning behavior. For a 

power-law liquid dependence of the effective viscosity, µeff, on applied shear rate is given by 

the well-known Ostwald–de Waele relation: 

1 n
eff k  , (1) 

where k is ‘‘flow consistency index’’, n is the ‘‘flow behavior index’’ and is the shear rate.  

A velocity profile for flow of a power-law fluid in a pipe of radius R with no-slip 

boundary condition is given by the following expression [32]: 
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where dP/dz is the pressure gradient and everywhere below we assume that the flow directed 

downward along z. According to Eq. 2, the average velocity, V, in a circular tube of cross-

sectional area of A, identical to that of actual Plateau border, is determined as follows: 
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According to Wang and Narsimhan, (2006) the average velocity in the actual Plateau border 

geometry, v, is related to that given by Eq. 3 as [33]: 

cVv , (4) 

where the coefficient c is [33]: 

)(nac  . (5) 

In the above equation a(n) are functions of flow behavior index, n, and their values are 

presented in Table 1. Here it is assumed that the interface is completely immobile (i.e. the 

Poiseuille flow).  

Table. 1. The values of velocity coefficient in Eq. 5 for different values of flow behaviour 

index [33]. 

n 1 0.8 0.6865 0.6 0.5 0.35 

a(n) 0.5169 0.4851 0.459 0.434 0.3922 0.2942 

 

Substitution of  Eq. 3 into Eq. 4 results in 
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Hence, the flow rate, qPb, in a Plateau border is as follows: 
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The quantity P in Eqs. 2-7 is referred to modified pressure and it is an abbreviation for the 

sum of the capillary pressure and gravitational contributions. Accordingly, the driving force 

for Plateau border drainage dP/dz is: 
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d
g
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where  is the liquid-air interfacial tension, Rpb is the radius of curvature of Plateau border;  

and g are the liquid density and the gravity acceleration, respectively. According to [34]:  
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where  is liquid volume fraction, Vb is the volume of a bubble of radius Rb, l is the length of 

the Plateau border, np is the number of plateau borders per bubble; C2~0.161, C1 a 

geometrical coefficient, C1=4ʌ/(3npį)~0.378-0.972 for a foam with structures between bcc 

(body-centred cubic) and fcc (face-centred cubic) and bubbles of the same size (l= įRb(1-)-

1/3, į=0.718-1.108, np=6-10) [34]. Substituting Eqs. 9 and 8 into Eq. 7 results in the following 

equation for the flow rate in a Plateau border: 
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If we define 
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then Eq. 10 can be rewritten as 
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According to Eq. 11 and Table 1, fn~49 for a Newtonian liquid (n=1) and immobile interface 

which is in complete agreement with the values reported earlier [8, 18, 35].   



The total volumetric flux through the Plateau borders is therefore calculated as [36, 37]: 
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where N=(1-ĳ)/Vb is the number of bubbles per unit volume. 

The mass conservation law for liquid inside Plateau border channels is [36] 
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Substituting Eq. 13 into Eq. 14 and replacing A with expression 9 results in the following 

equation for the liquid volume fraction, : 
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Let us introduce the following dimensionless variable and co-ordinate: 
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Substitution of these variables into Eq. 15 results in 
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where 
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is a corresponding Bond number. 

For a fresh foam produced in the foam column, the liquid volume fraction profile is initially 

uniform, that is, i  )0,(  [38, 39]. 

3.1 Boundary conditions 

During the drainage the liquid from the top of the foam drains to the lower parts. Therefore, 

the liquid volume fraction at the top decreases with time. There is a critical liquid volume 

fraction, cr, below which the coalescence/bubble burst begins [40]. The value of this critical 

liquid volume fraction is a function of the nature of the surface active substances (polymer 

and/or surfactant) and their concentration. The critical liquid volume fraction is determined 

by a disjoining pressure action [36, 41, 42]. However, in Ref. [40] a mechanism based on a 

critical film dilatation is proposed for the onset of coalescence and critical liquid content in 

draining foams. Based on the theory of critical liquid volume fraction, there are two possible 

scenarios for the boundary condition at the top of the foam (i.e. z=H1(t) or ȗ= ȗ1(t)): (i) If the 

liquid volume fraction at z=H1 is higher than cr, then there is no bubble collapsing at the top 

of the foam (i.e. dH1/dt=0) and the top boundary condition is  zero liquid flux: 

0),( 1 tHQ , (21) 

or in dimensionless form: 

0),( 1 Q , (22) 



(ii) If the foam continues to dry and the liquid volume fraction at z=H1 drops to the value of 

cr, then the bubbles at the top of the foam start to rupture and the height of the foam 

decreases from the top (i.e. dH1/dt>0).  In this case the boundary condition at the top of the 

foam is a constant liquid volume fraction: 

crttH  )),(( 1  (23) 

or 

cr )),(( 1  (24) 

 

and the rate of foam collapse, dH1/dt, can be expressed according to the following equation 

[36]: 
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After the onset of the drainage, the boundary condition at the bottom of the foam is a constant 

liquid volume fraction, max~0.36, which corresponds to random packing limit for spherical 

particles in three dimensions [43]. However, as we consider a uniform initial liquid volume 

fraction along the foam height (i.e. max)0,(   icr ), the boundary condition at 

the bottom of the foam should be zero liquid flux during a very early stage of the drainage 

until the liquid volume fraction at the bottom of the foam reaches max. 

As the foam drains the polymeric solution accumulates under the foam and the interface 

between the foam and polymeric solution, H2, moves up. The rate of this movement can be 



found using a mass conservation law of the polymeric solution within the whole column (see 

Supplementary material S1): 
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or in dimensionless form: 
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The above equations could be easily deduced from the fact that the product of the front 

velocity with the density difference of the two sides of the front is equal to the flux. 

The equilibrium profile for liquid content inside the foam is reached when the gravity and 

capillary gradient forces equilibrate each other inside the foam. The equilibrium profile can 

be found by assuming zero liquid flux across the foam height. Integration of Eq. 15 in this 

case using the boundary condition at the bottom of the foam ( max2 )),((  ttH ) results 

in: 
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Eq. 30 can be rewritten as the following dimensionless form: 
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Eq. 31 shows that as expected, the equilibrium profile does not depend on flow behavior 

index, n, and it is identical to foams produced from Newtonian liquids. The calculated profile 



of the equilibrium liquid volume fraction is in good agreement with the results presented in 

Ref. [44] using the concept of an osmotic pressure (see Supplementary material Figure S1).  

If e1  is substituted in the above equation (we suppose that e1 is the dimensionless 

position of the top of the foam at equilibrium), then the equilibrium liquid volume fraction at 

the top of the foam can be deduced. The latter is a function of the foam height at equilibrium,

ee 12    and can be calculated as  
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The dependency of the equilibrium liquid volume fraction at the top of the foam on the foam 

height (according to Eq. 32) is schematically illustrated in Fig. 2. As shown in Fig. 2, 

)( 1ee  increases to max as the final foam height, ee 12   , decreases. Substituting 

cree  )( 1  in Eq. 32 allows determining a critical foam height, Ȝcr. This critical foam 

height is shown in Fig. 2 where cree  )( 1 . 

If the initial foam height, ii 1212 )0()0(    is less than Ȝcr then over duration 

of the whole process the liquid volume fraction at the top of the foam remains above the cr  

and the top part of the foam does not move, that is i11 )(   . However, if ii 12    is bigger 

than Ȝcr then two possibilities can be predicted: (1) over duration of the whole drainage 

process the liquid volume fraction at the top of the foam remains above the cr , which is 

exactly the same as before, (2) at some moment in time, cr, crcr  ),( 1 . After that 

moment the apparent boundary of the foam at the top starts to decrease according to Eq. 26. 



   

Fig. 2 The dependency of the equilibrium liquid volume fraction at the top of the foam on the 

foam height. 

 

Therefore, the foam height will decrease from both top and bottom boundaries while

cr ),( 1 . This reduction in foam height continues until the time when it reaches 

equilibrium. According to Eq. 32 and Fig. 2, the final height of the foam in this case is fixed 

and equal to the critical foam height, cree   12 . Considering a mass conservation of the 

polymeric solution within the whole column at initial and final state of the process, it is 

possible to predict which of the two above mentioned possibilities will occur: 
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The left hand side of the equation shows the initial amount of the liquid presented within the 

whole column while the right hand side of the equation determines the final liquid content at 

equilibrium.  Eq. 33 can be rewritten as the following dimensionless form: 
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If we suppose that during the drainage the liquid volume fraction at the top of the foam drops 

to the value of cr  (i.e. the second possibility occurs), then as mentioned above

cree   12 . Substituting this expression into Eq. 34 results in 
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From the above equation 
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Since the foam height decreases from the top in this case, 011  ie   and the right hand 

side of Eq. 36 should be also a positive value: 
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According to the above equation the condition for the movement of the top of the foam 

during the drainage can be written as: 
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A comparison between the values of i and t for each foaming solution can predict the state 

of the top of the foam during the drainage. The integral in Eq. 39 (to find the values of t) can 

be calculated numerically using Eq. 31 for different values of Bo number and it is identical to 

the area under the equilibrium curve from 012  ee   to cree   12  in Fig. 2. Therefore, 

in the case in which the initial foam height, ii 12   , is bigger than Ȝcr the foam height 

decreases from the top boundary only if the condition specified in Eq. 39 is satisfied for the 

value of initial liquid volume fraction. Otherwise the liquid volume fraction at the top of the 

foam remains above the cr and the top boundary of the foam does not move.  

 

3.2 Model calculation 

The model of foam drainage described by dimensionless Eq. 19 has been solved using 

finite element method on one dimensional regular grid with 800-1200 elements 

corresponding to the foam height. A backward differentiation formula was used to solve 

time-dependent variables and time stepping was free taken by solver with initial step size of 

10-20. Relative tolerance was set to 10-8, whereas absolute tolerance was set to 10-10. The 

boundary conditions at the top and bottom of the foam and their locations were imposed and 

updated as described in the previous section to obtain the evolution of liquid volume fraction 

inside the foam. The values of t0, z0, Bo, Ȝcr, flow behavior index, n, and flow consistency 

index, k, are obtained for different polymeric solutions based on the experimental data shown 

in the next section.  



 

4. Results and discussion 

4.1 Rheology and surface tension measurements of polymeric solutions 

The rheology of polymeric solution is an important parameter in the kinetic of the foam 

drainage. Fig. 3 shows the dependency of the measured effective viscosity of different 

polymeric solutions on shear rate. The dependencies are fitted according to Eq. 1. The 

obtained values of k and n for different polymeric solutions are listed in Table 2 and are used 

in calculations below. The shear thinning character of the polymeric solutions was found, as 

expected. Fig. 3(a) shows that the solutions viscosity decreases with increasing of the salt 

concentration. Fig. 3(b) also indicates that solution viscosity increases with the increase of 

the polymer concentration. The values of surface tension for different polymeric solutions are 

given in Table 2 and they are used in calculations. 

 

a) b) 

Fig. 3 The dependency of the measured effective viscosity of a) A22 and b) A33 solutions on 

shear rate. The dependencies are fitted according to Eq. 1. Fitted values are given in Table 2. 

 



4.2 Foam drainage of polymeric solutions 

Drainage of foams produced from power-law non Newtonian liquids of three compositions 

of A22 and A33 polymers have been chosen for investigation as shown in Table 2. The 

density of all solutions was around 1000 kg/m3. Each foam drainage experiment was 

performed for 120 minutes. The average bubble size reported in Table 2 indicates that the 

foams formed from the more viscous solutions had larger bubbles. Based on the four obtained 

experimental data, k, n, Ȗ and Rb, we calculated Bo, c, Įn, z0, t0 and Ȝcr according to Eqs. 20, 5, 

16, 18, 18 and 32 respectively, and their values for each foaming solutions are reported in 

Table 2. The values of velocity coefficient, c, were found according to Eq. 5 and Table 1. To 

find the critical foam height, Ȝcr, (according to Eq. 32) the values of critical liquid volume 

fraction cr, are required. In Ref. [40] a narrow field of liquid fraction ranging from 0.0005 to 

0.0007 was found as the critical liquid volume fraction in foam stabilised by mixture of 

surfactants. As a rough estimate, this range was used below to calculate the critical foam 

height. As can be seen in Table 2, the initial foam height (~0.15 m) is higher than the 

estimated critical values for different polymeric solutions. The values of t in Eq. 39 are also 

calculated for each foaming solution and their values are reported in Table 2. The initial 

liquid volume fraction, i (~0.25-0.30) is lower than the calculated values of t; thus, the 

condition specified in Eq. 39 is satisfied.  Although this suggests that the liquid volume 

fraction at the top of the foam drops to the value of cr and the foam height decreases from 

the top boundary, the measured experimental data showed that the change of the location of 

the top of the foam, H1, was negligible compared to the change of the foam height, H2-H1, for 

all polymeric solutions during the drainage (maximum 7.4 %). Foams produced from 

polymeric solutions are more stable than foams build up by surfactant solutions; thus,cr is 

expected  to be lower and Ȝcr should be higher for foams stabilized by polymers than by 



surfactants only. It confirms that the liquid volume fraction at the top of the foam ),( 1 tH

does not decrease to the value of cr during the draining and, hence, zero liquid flux boundary 

condition (Eqs. 21-22) was used in the simulations below. Accordingly, the value of cr is set 

so low that there is no collapse for the foams examined here. Our calculations according to 

Eq. 39 suggest a value of roughly 0.0001 for the critical liquid volume fraction cr within the 

foams produced from the polymeric solutions used in our experiments.  

Table 2. Characteristic values of polymeric solutions and their foam drainage. The first 

four values, k, n, Ȗ and Rb are extracted from the experimental data. The second seven values, 

Bo, c, Įn, z0, t0, Ȝcr andt are calculated according to Eqs. 20, 5, 16, 18, 18, 32 and 39 

respectively. 

Foaming 

solutions 

k  

(Pa.sn) 

n 

(-) 

Ȗ  

(N/m) 

Rb 

(m) 

Bo 

(-) 

c 

(-) 

Įn 

(-) 

z0 

(m) 

t0 

(s) 

Ȝcr 

(-), (m) 

t 

(-) 

A22_1.0%1.3M 0.7102 0.402 0.038 0.00139 3.003 0.334 20.575 0.00197 38.449 
20.976-24.973, 

0.041-0.049 
0.67-0.72 

A33_1.0%0M 0.3761 0.535 0.030 0.00131 3.358 0.408 31.033 0.00175 13.115 
19.837-23.617, 

0.035-0.041 
0.73-0.78 

A33_1.5%0M 1.7246 0.437 0.027 0.00158 5.435 0.358 22.916 0.00166 316.148 
15.593-18.564, 

0.026-0.031 
0.80-0.83 

 

Figure 4 shows calculated results on the time evolution of liquid volume fraction, ĳ, over the 

foam height, ȗ, for “A33_1.0% 0M” solution. In this figure ȗ=0 is the top of the foam and 

ĳi=0.2939, according to the experimental data. In the very beginning of the drainage the 

liquid volume fraction varies only at the top and bottom of the foam, whereas in the middle 

part of the foam the initial value is retained. The interface between the foam and polymeric 

solution at the bottom is moving up during the drainage. This decrease of the foam height is 



very fast in the early stage of the drainage; however, reduction of the foam height and the 

profile of the liquid volume fraction approach a steady state over time. 

 

Fig. 4 Time evolution of the predicted results of liquid volume fraction, ĳ, over the foam 

height, ȗ, for “A33_1.0% 0M” solution (ȗ=0 corresponds to the top of the foam). 

 

Comparison of the predicted and experimental time evolution of the height of the foam, ȗ2-ȗ1, 

and average liquid volume fraction, ĳ, is shown in Figs. 5 and 6, respectively for different 

polymeric solutions. As expected, for all polymeric solutions the foam height and the average 

liquid volume fraction decrease dramatically in the beginning of the drainage and after some 

time they reach a plateau. As can be seen in Figs. 5 and 6, the predicted values are in a 

quantitative agreement with the measured experimental data (R2>0.85). According to Ref. [29] 



elongational properties of the polymeric solution can also affect the foam drainage. It was 

found that the rate of the drainage increases by increasing the elongational viscosity of the 

solutions. This influence can be important at higher contractions of the polymeric solutions 

and with larger polymer molecular weights [29, 30], this phenomenon could account for the 

small deviations between predicted results and experimental data presented below.  

 
a)  

 
b) 

 

 
c) 

Fig. 5 Comparison of the predicted time evolution of the height of the foam, ȗ2-ȗ1, with 

experimental data for a) A22_1.0% 1.3M, b) A33_1.0% 0M and c) A33_1.5% 0M. 



 a)  b) 
 

 
c) 

Fig. 6 Comparison of the predicted time evolution of the average liquid volume fraction 

along the foam height, ĳ,  with experimental data for a) A22_1.0% 1.3M, b) A33_1.0% 0M 

and c) A33_1.5% 0M. 

 

5. Conclusions 

A model for free drainage of foams produced from power-law non-Newtonian shear thinning 

liquids is presented and compared with experimental data for the drainage of foams formed 

by A22 and A33 polymeric solutions. Equation was deduced, which describes the drainage of 

foam build up by a power-law non-Newtonian liquid. The boundary condition at foam/liquid 

interface is a constant liquid volume fraction corresponding to the maximum liquid volume 



fraction inside the foam. There are two possible boundary conditions at the top of the foam 

which depends on the initial foam height and initial liquid content within the foam: (i) If the 

liquid content at the top is higher than a critical liquid volume fraction, there is no collapsing 

of bubbles at the top of the foam and boundary condition is zero liquid flux; (ii) If the liquid 

volume fraction at the top of the foam drops to a critical value, the height of the foam 

decreases from the top by collapsing of the bubbles at the top of the foam. The predicted 

values showed that in the early stage of the drainage the liquid content varies only at the top 

and bottom of the foam, whereas in the middle section of the foam the initial value is retained. 

The interface between the foam and polymeric solution was moving up during the drainage 

and the kinetics of this motion is predicted. This decrease in the foam height was very fast in 

the very beginning of the drainage; however, it reached a steady state over time. The 

equilibrium profile of the liquid volume fraction is predicted and shown that it does not 

depend on power law index, n, of non-Newtonian liquid. The predicted values of the time 

evolution of the foam height and liquid content were in good agreement with the 

experimental data. 
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a velocity coefficient 

A Plateau border cross-sectional area, m2 

Bo Bond number 

c velocity coefficient 

C geometrical coefficient 

C1 geometrical coefficient 

,fn drag coefficient 

g gravity acceleration, m/s2 

H column height, m 

H0 initial height of the liquid  before producing the foam, m 

H1 position of the top of the foam, m 

H1e position of the top of the foam at equilibrium, m 

H1i initial position of the top of the foam, m 

H2 position of the foam/polymeric solution boundary, m 

H2e position of the foam/polymeric solution boundary at equilibrium, m 

H2i initial position of the foam/polymeric solution boundary, m 

k flow consistency index, Pa sn 

l length of the Plateau border, m 



n flow behavior index 

np number of plateau borders per bubble 

N number of bubbles per unit volume, 1/m3 

p pressure, Pa 

P modified pressure, Pa 

qPb flow rate in Plateau border, m3/s 

Q total volumetric flux through the Plateau borders, m/s 

r radial co-ordinate, m 

R radius, m 

Rb radius of bubbles, m 

RPb curvature radius of Plateau border, m 

t time, s 

t0 characteristic time scale, s 

u velocity, m/s 

V average velocity in a circular tube, m/s 

Vb bubble volume, m3 

z co-ordinate axis, m 

z0 characteristic length scale, m 

Greek Symbol 



n coefficient in Eq. 15 

 surface tension, N/m 

  shear rate, s-1 

 geometrical coefficient 

ȗ dimensionless vertical co-ordinate  

ȗ1 dimensionless position of the top of the foam 

ȗ1e dimensionless position of the top of the foam at equilibrium 

ȗ1i dimensionless initial position of the top of the foam 

ȗ2 dimensionless position of the foam/polymeric solution boundary 

ȗ2e dimensionless position of the foam/polymeric solution boundary at 

equilibrium 

ȗ2i dimensionless initial position of the foam/polymeric solution boundary 

cr dimensionless critical foam height 

µeff effective viscosity, Pa s 

  average velocity in actual Plateau border geometry, m/s 

 liquid density, kg/m3 

Ĳ dimensionless time 

 liquid volume fraction 



i initial liquid volume fraction 

cr critical liquid volume fraction 

e equilibrium liquid volume fraction 

max maximum liquid volume fraction 
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A mathematical model of free drainage of foam built up by a power-law non-Newtonian 

liquid is developed. The theory predictions are compared with the experimental data on the 

drainage of foams formed using commercially available AculynTM22 and AculynTM33 

polymeric solutions. The rheological parameters of the polymeric solutions were 

independently measured and used in the calculations. The deduced dimensionless equations 

were solved using finite element method with appropriate boundary conditions. The 

numerical simulations show that the decrease in the foam height and liquid content is very 

fast in the very beginning of the drainage; however, it reaches a steady state at longer time. 

The predicted values of the time evolution of the foam height and liquid content are in good 

agreement with the measured experimental data.  
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