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Abstract 

Equilibrium of liquid droplets on soft deformable substrates is investigated.. Disjoining pressure 

action in the vicinity of the apparent three phase contact line is taken into account. It is shown that 

the disjoining pressure action determines the substrate deformation. A simplified linear disjoining 

pressure isotherm and simple Winkler's model to account for the substrate deformation are used 

which allows to deduce an analytical solutions for both the liquid profile and substrate deformation.  

The apparent equilibrium contact angle that the liquid makes with the substrate is calculated and it’s 

dependency on the system parameters is investigated.          

Key words: equilibrium droplets, deformable substrate, disjoining pressure. 

1 Introduction 

Equilibrium of a liquid droplet on a solid substrate is frequently described based on Young’s 

equation [1]. This simplified equation involves the balance of the horizontal forces leaving the 

vertical force unbalanced. The latter is possible in the case of a rigid substrate but should be 

reconsidered in the case of soft deformable substrates. It has been shown in [2] that disjoining 

pressure action in the vicinity of the apparent three phase contact line results in a deformation of a 

soft solid substrate.   

Note, that in the case of direct application of Young’s equation, at the three phase contact line there 

exists deformation singularity, i.e. the substrate deformation goes to infinity [3-7]. Their 

investigation revealed that all the equilibrium properties (i.e. contact angle, droplet radius, droplet 

volume, etc.) of the system under consideration rely upon the selected artificial length parameter 

which determines a width of zone near the contact line where surface tension is applied. However, 
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disjoining pressure is a real physical phenomenon, which determines the substrate deformation of 

soft surfaces.   

The shape of the disjoining pressure isotherm determines the shape and the contact angle of the 

droplet at equilibrium  [2].  

The problem of equilibrium of the droplet on a deformable substrate has recently gained a lot of 

interest. There have been a number of experimental studies recently that have considered liquids on 

deformable substrates [8-14], where deformation of soft solids was investigated near the apparent 

contact line, but there exists a gap in theoretically understanding of the problem. This void is 

primarily due to the stress singularity present at the three phase contact line. 

Below a mathematical model is presented which incorporates the effect of both capillary and 

disjoining pressure isotherm on the substrate deformation.  

2 Disjoining pressure and deformation of soft solids  

In the case of partial wetting, that is, equilibrium contact angle,     , the shape of the transition 

zone  between the bulk of the liquid and the thin film on substrate can be expressed via the 

disjoining pressure isotherm,      [2]. The equilibrium excess pressure,   , inside the droplet can 

be expresses according to Kelvin’s equation [2] and the equilibrium contact angle of a two 

dimensional droplet can be expressed using the disjoining pressure isotherm as follows [2]: 

 
           

       

 
 

 

 
       

 

  

 (1) 

Eq. (1) corresponds to an S-shaped disjoining pressure isotherm,     . Below the transition zone 

between the flat meniscus and a film having      is examined below as an example, following 

[15]. The liquid droplet forms a wedge changing to flat equilibrium film of thickness,   , far from 

the droplet (Fig. 1).  



 

Fig. 1. 1- Profile of transition zone h(x) between bulk liquid and flat wetting film, 2- s shaped 

disjoining pressure isotherm,     , and 3 - profile of normal pressures acting on substrate; xY 

is the position where the vertical force is exerted. 

The origin is taken at    , which is a point on the profile lying beyond the influence of surface 

forces (Fig. 1). The profile of the transition zone,     , can be calculated according to Eq. (2), 

which includes the influence of capillary and disjoining pressure isotherm [2]: 

            
    

                    , (2) 

where,         ;            ; and    is the excess pressure in the droplet. In the region of 

the flat equilibrium film,       and         . In bulk of the liquid, beyond the influence of the 

surface forces,     and       , where R is the radius of curvature of the droplet. In case of 

planar wedge (Fig. 1,     and     . Therefore from Eq. (2) can be concluded: 

       
    

            . (3) 

The resultant forces on the substrate is given by the following equation: 

          
 

 
. (4) 

Substituting the disjoining pressure isotherm      according to Eq. (3) in equation (4) results in: 

 
      

   

         
 

 

   
 

 

  
     

           
 
 

 
      

           

        

(5) 



Boundary conditions used in the expression above (equation (5)) are,         and       

     . This shows that the integration performed over the local values leads to same expression as 

the vertical component of the surface tension from the Young’s equation. In contrast to Young’s, 

the force is not exerted on a specific point, but is distributed over the region where disjoining 

pressure acts, i.e. transition zone. Based on this conclusion a mathematical model is derived in the 

next section. 

3 Mathematical model  

In this section a mathematical model is derived for a liquid droplet on a deformable substrate. 

According to Winkler’s model there is a linear relationship between the local deformation and the 

applied local stress [16, 17]. Winkler’s model is used below. 

 

 

Fig. 2. Schematic diagram of the liquid droplet on a deformable substrate. 

 

Deformation in the soft substrate is local and is directly proportional to the applied pressure,  . 

According to Winkler’s model, 

       , (6) 

where   is the elasticity coefficient,    is the local deformation of the substrate due to the presence 

of the droplet above. 

The pressure in the ambient air is     . Under the action of the pressure from the ambient air the 

solid deformation is: 

            (7) 

The deformed solid substrate is covered by equilibrium liquid thin film, which is calculated 

according to well-known Kelvin’s equation: 
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where,    is the molar volume of the liquid,   is the temperature,   is the gas constant; vapour 

pressure,  , which is higher than he saturated pressure     . Reminder, a droplet can be at the 

equilibrium with oversaturated vapour pressure. 

The excess free energy of the equilibrium thin film of deformed solid per unit area is given by, 

        

     
           

   
 

  
         

 

  

 (9) 

where,                ,  and s are liquid-vapour and solid-vapour interfacial tensions. This 

free energy should be subtracted from the free energy of the droplet, otherwise the excess free 

energy of the droplet will be infinite. The excess free energy of the droplet is as follows, 

                                                     (10) 

where   means “as compared with a flat equilibrium film”. Therefore Eq. (10) can be rewritten as: 
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where  
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The expression under the integral in Eq. (11) tends to zero as    tends to infinity. 

 Under equilibrium conditions the excess free energy should reach to a minimum value. To satisfy 

this condition the first variation of free excess energy should be zero, which results in two Euler 

equations for the droplet and soft substrate profiles, 
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Substitution the expression for   from (12) into equations (13) and (14) results in the following 

equations: 
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These two equations (15) and (16) forms a system of two differential equations for two unknown 

profiles: the liquid droplet, h(r), and deformed solid substrates, hs(r). 

Below the simplest case is considered,      . Eq.(16) in this case results in: 

                   (17) 

Region where surface forces are negligible, i.e. bulk of the droplet, equation (17) gives: 

          (18) 

because    is negative. Hence, Eq. (17) is in agreement with definition (6). In the case of a low 

slope approximation,        the profile of the droplet      and profile of the substrate       

satisfy the following set of a second order ordinary differential equation and an an algebraic 

equation: 
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                   (20) 

Eq. (19) is different from the usual capillary equation for the droplet on a rigid substrate, because 

now the disjoining pressure term depends on the profile of the deformable substrate,      , which is 

determined according to Eq. (20). Both Eq. (19) and (20) are coupled and can be solved numerically 

only, however, below the problem is simplified even further to obtain an analytical solution.  For 

this purpose we adopt a very simple disjoining pressure isotherm (linear function of   (Fig. 3)): 
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Fig.3. Simplified disjoining pressure isotherm adopted below for calculations. 

 

where    and t0 are defined in Fig. 3,    is the range of surface forces action. The slop   of the      

dependency is given by: 

 
  

     
  

 (22) 

The selected linear dependency of the disjoining pressure isotherm      on   according to Eq. (21) 

in spite of considerable simplification still captures the essential properties of the disjoining 

pressure isotherm (i) it satisfies the stability condition,         when     , and (ii) the 

influence of surface forces is short range and radius of it’s action is defined by    ; (iii) at the proper 

choice of the disjoining pressure parameters (see below) it corresponds to the particle wetting case.   

3.1 Droplets on a non-deformable substrate 

Fig. 4 shows a schematic diagram of the droplet on the non-deformable solid substrate, where    is 

the length from the origin to the point where the influence of the surface forces come into play,   is 

the effective radius of the droplet base,       is the equilibrium contact angle the droplet makes with 

the solid substrate,   is the radius of the droplet. 

 

Fig. 4. Schematic diagram of a droplet on a non-deformable solid substrate. Here, 
eP

R


 . 

For a solid non-deformable substrate Eq. (19) reduces to: 

       
  

 
         . (23) 



For the bulk of the liquid droplet, i.e. the spherical region, at      and        . Hence, in this 

region Eq.0 (23) transforms into:  

       
  

 
    . (24) 

Solution of this equation is:  

           , (25) 

where integration constants,   and  , can be determined from boundary conditions at r=0 and r=L 

and this solutions is marked by a subscript out: out 
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 (26) 

For the transition region in the case of non-deformable solid substrate Eq. (23) along with the 

disjoining pressure isotherm given by Eq. (21) results in: 
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Solution of Eq. Error! Reference source not found. is as follows: 

  in                 (28) 

where,    
 

 
 , K0 is the modified Bessel function of the zero order, C1,nd is an integration constant 

and this solution is marked by the subscript in. Solutions (25) and (28) should satisfy the following 

boundary conditions:  

)()(;)()( 11111 LhLhtLhLh inoutinout  , which gives three equations for determination of the 

three unknown coefficients: C1,nd, e,nd and L1.  

Solution results in  
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The latter allows determining the effective radius of the droplet, L: 

      
      . (32) 

Introducing:            ), Eq. (30) can be rewritten as   
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The equilibrium contact angle was previously determined according to Eq. (1). According to the 

simplifies isotherm (Fig. 3) this contact angle can be calculated as:   
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3.2 Deformable substrate 

Fig. 5 shows a schematic diagram of a droplet on the deformable solid substrate based on the 

assumption of a linear disjoining pressure, according to Eq. (21) (Fig.3). In Fig. 5      is the 

equilibrium macroscopic contact angle of the droplet with the soft substrate. 

 

Fig. 5. Schematic diagram of droplet on a deformable/soft substrate 

For the bulk of the liquid droplet, i.e. the spherical region,        , that is at 0<r<L1 (Fig. 5) 

from Eq. (21): 

        (35) 

For the transition region, that is at r>L1 Eq. (20)gives: 
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Substitution of the latter expression into Eq. (20) results in:  

 
    

  

 
 

 

       
  

      

       
  

Solution of the latter equation is: 

               ,  

where     
 

       
  and C1,d is an integration constant.  



The droplet profile and its derivative should be continuous at r=L1, but the solid surface should be 

discontinuous and h(L1)-hs(L1)=t1. Using these boundary conditions all unknown constants C1,d, e,d 

and L, can be determined. Below only expression for the contact angle on the deformable substrate 

is presented:  
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where          ). That is if     (non-deformable substrate), then           . Expression   

   

 
        in Eq. (37) is always positive, that is,            the contact angle on a deformable 

substrate is always bigger than the contact a angle on the corresponding non-deformable substrate. 



4 Results and Discussion 

4.1 Non-deformable substrate: Effect of variation of    on        

Dependency of equilibrium contact angles       and       from according to Eqs. (280) and (34) on 

   are presented in this section. Below      is varied from 0 to     . Fig. 6 shows the behaviour of 

equilibrium contact angle when the excess pressure is varied. Fig. 6a shows the variation at 

         cm and Fig. 6b shows variation at          cm. In both cases, two-dimensional 

equilibrium contact angle       calculated according to Eq (34) turns up to be higher as compared 

with three-dimensional equilibrium contact angle calculated according to Eq. (33). It was shown 

earlier [2]       can only increase with the decrease in Pe, which is in agreement with both Figs. 6a 

and 6b. However, it turns out that the dependency of the contact angle in the three dimensional case, 

     , differs substantially from the two dimensional case (always higher) and can go via minimum 

as a function of Pe (Fig. 6a). If the value of    is increased and brought closer to    then        is an 

increasing function of    with no minimum. 

 

 

(a)           cm 



 

(b)           cm 

Fig. 6. No-deformable substrate. Effect of variation of excess pressure,    on two-dimensional, 

     , and three-dimensional,      , equilibrium contact angles. Selected parameters are as 

shown 

 

 

 

 

 

4.2 Deformable substrate 

The profile of the droplet and the subsequent changes in the deformable substrate are plotted in Fig.  

using equations deduced in section 3.2. The soft substrate behaves in the same manner as predicted 

in Fig. 5.  
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Fig. 6. Deformable substrate. Calculated profile of the droplet and deformable substrate.  
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4.3. Effect of variation of    on equilibrium contact angle        

Excess pressure is varied as before            . In order to compare the results with the      , 

the value of   is increased gradually from   to        . All other physical properties of the 

disjoining pressure isotherm are kept the same as shown in Fig. 6. for    which is equal to   

    cm in Fig. 7a and is equal to        cm in Fig. 7b. Fig. 7a has a minima for      and it 

becomes an increasing function as    is increased and brought closer to    (Fig. 7b). It is apparent 

from Fig. 7 that      is bigger than       for all values of     .  



 

(a)           cm 

 

(a)           cm 

Fig. 7. Effect of variation of excess pressure,    on      for different values of elasticity 

coefficient    

 

 



5 Conclusions 

Equilibrium of liquid droplets on soft deformable substrates is investigated. Disjoining pressure 

action in the vicinity of the apparent three phase contact line is taken into account. It is shown that 

the disjoining pressure action determines the substrate deformation. A simplified linear disjoining 

pressure isotherm and simple Winkler's model to account for the substrate deformation are used 

which allows deducing an analytical solutions for both the liquid profile and substrate deformation.  

The apparent equilibrium contact angle that the liquid makes with the substrate is calculated and its 

dependency on the system parameters is investigated.  It is shown also that the calculated 

equilibrium contact angles in the case of non-deformable substrates in the case of two-dimentional 

droplets are bigger as compared with three dimensional case. It is shown that equilibrium contact 

angles on deformable substrates are always higher than on the corresponding  non-deformable 

substrates.        
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Abstract 

Equilibrium of liquid droplets on soft deformable substrates is investigated.. Disjoining 

pressure action in the vicinity of the apparent three phase contact line is taken into account. It 

is shown that the disjoining pressure action determines the substrate deformation. A 

simplified linear disjoining pressure isotherm and simple Winkler's model to account for the 

substrate deformation are used which allows to deduce an analytical solutions for both the 

liquid profile and substrate deformation.  The apparent equilibrium contact angle that the 

liquid makes with the substrate is calculated and it’s dependency on the system parameters is 

investigated.          
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