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Abstract 

While the stability of liquid films on substrates is a classical topic of colloidal science, the 

availability of nanostructured materials, such as nanotubes, nanofibers and nanochannels, has raised 

the question of how the stability of liquid films and their wetting behaviour is affected by nanoscale 

confinement. This paper will present the conditions for the stability of liquid films on and inside 

cylindrical solid substrates with nanometre scale characteristic dimensions.  It is shown that the 

stability is determined by an effective disjoining/conjoining pressure isotherm which differs from the 

corresponding disjoining/conjoining pressure isotherm of flat liquid films on flat solid substrates. 

From the former, the equilibrium contact angles of drops on an outer or inner surface of a cylindrical 

capillary have been calculated as a function of surface curvature, showing that the expressions for 

equilibrium contact angles vary for different geometries, in view of the difference in thickness of the 

film of uniform thickness with which the bulk liquid (drops or menisci) is at equilibrium. These 

calculations have been extended to the case of glass nanocapillaries and carbon nanotubes, finding 

good agreement with experimental results in the literature.  

Keywords: disjoining pressure; wetting; capillary filling; carbon nanotubes; carbon nanofibers 
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1. Introduction 
 

The stability of liquid films on substrates is a classic topic of colloidal science and a vast literature 

exists on the subject (see [1, 2] and the references wherein).  An area of renewed interest is 

understanding how the stability of liquid films and their wetting behaviour is affected by nanoscale 

confinement of liquids on or inside nanofibers, nanotubes or nanochannels [3, 4].  

How fluids wet nanofibers, for example, is of primary importance in the area of composite 

materials, where a strong adhesion between the matrix and the fibre is essential for effective load 

transfer [5-7]. In the case of carbon nanotube (CNT) – polymer matrix composites, the key to a 

successful load transfer between the matrix and the fibre reinforcement has been the ability of the 

matrix material to wet the CNTs [8, 9]. To achieve this result, chemical modification of polymer 

matrixes has often been required to change their wetting behaviour. An example of the latter is the 

observation via environmental scanning electron microscopy (ESEM) of the difference in the contact 

angle of pure and modified PVDF nanodroplets on CNTs [7]. Similar results have been obtained 

with different combinations of nanotubes, nanofibers and polymer matrixes [10]. Conversely, 

polymers have been used to alter the wettability of nanotubes, in particular concerning their 

dispersability in aqueous media. An example is the addition of anti-foaming agents to improve the 

dispersability of CNTs in dispersions via ultra-sonication by eliminating air trapped at the CNTs 

surface [11].  

Nanoscale confinement appears to have a significant effect on the filling of nanotubes and 

nanopores [3, 4, 12]. Molecular dynamics simulations have shown the presence of a monolayer of 

liquid adsorbed on the wall in the capillary filling of nanochannels, leading to the deformation of the 

meniscus profile from the ideal circular cross-section [13]. This distortion has been attributed to the 

disjoining pressure induced by molecular interactions between the fluid and the channel wall [1, 2]. 

Some evidence of the formation of precursor layers in the capillary filling of nanochannels has been 

obtained via ESEM studies of preferential condensation of water inside hydrophilized CNTs [14, 

15]. Density functional theory calculations have also shown that these layers would have reduced 

viscosity compared to the ‘bulk’ fluid and that their stability would endure beyond the initial 

capillary filling stage [16, 17]. As the thickness of these precursor layers or any other thin liquid film 

approaches the nanometre scale, the effect of long-range forces (van der Waals, electrical double 

layer and structural forces) becomes significant. Their effect on macroscopic wetting is well known 

and can be described using the disjoining/conjoining pressure [18]. Recently, the effect on wetting of 

nanometre scale films of the presence of nanoparticle dispersions has been investigated, showing 

that for film thicknesses comparable with the nanoparticle size, the latter tends to assume an ordered 

structure, reducing film pressure and, thereby, increasing the spreading of the liquid [19].  

The validity of the above results is limited to the continuum model regime. For nanoscale 
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confinement inside CNTs, the size threshold below which the continuum model no longer can be 

applied has been calculated, using molecular dynamics, as about 2nm[3, 4, 20]. Some experimental 

evidence of this limit has been observed in transmission electron microscope (TEM) micrographs of 

water plugs inside ~2 nm diameter carbon nanotubes, where a continuous, well defined liquid 

meniscus could not be observed [21, 22]. 

In all these areas the stability of liquid films represents a key factor in understanding the effect of 

nanoscale confinement on liquid wetting. This paper presents the conditions for the stability of liquid 

films on and inside cylindrical solid substrates, with particular emphasis on nanometre scale 

substrates.  It is shown that the stability is determined by an effective disjoining/conjoining pressure 

isotherm,  heff , which differs from the corresponding disjoining/conjoining pressure isotherm of 

flat liquid films on flat solid substrates.  

2. Liquid profiles on a curved surface: derivation of governing 
equations. 

 

The excess free energy of a liquid droplet on the outer surface of a cylindrical capillary of radius 

a  is as follows  
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where the outer surface of the cylindrical capillary covered by the equilibrium liquid film of the 

thickness he was selected as a reference state; x is in the direction parallel to the cylinder axis (Fig. 

1).  

 

 

 

Fig. 1. Cross section of an axi-symmetric liquid droplet on the outer surface of a cylinder of radius a. 

H – the maximum height of the droplet, eh  – the thickness of an equilibrium film of a uniform 

thickness, eh . 
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In Eq. (1), the first term represents the excess of the surface energy as compared with the surface 

energy of the flat equilibrium liquid film; the second term is the excess energy associated with the 

excess of the drop volume as compared with the volume of the flat film; the third term represents the 

excess of the energy caused by the surface forces action again as compared with the excess in the flat 

films. 

The conditions of equilibrium are as follows [2]: 

(A)  0 or 0
f d f

h dx h


 
   

 
      

(B)  
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,  
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   

(C) The solution of the Jacoby’s equation, u(x), should not vanish at any position x inside the 

region under consideration, except for boundaries of the region of integration in Eq. (1),    

(D) The transversality condition at the apparent three phase contact line should be satisfied. The 

transversality condition provides the condition of a smooth transition from a non-flat liquid profile to 

a flat equilibrium film in front [2]. The transversality condition reads 0
x

f
f h

h 






 
  

, where  is 

the position of the three phase contact line.  

 

 Condition (A) results in the following equation describing the liquid profile on the surface of the 

cylindrical capillary: 
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Note that the latter equation is different from the corresponding equation for the case of flat 

surfaces [2],  
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not only because of the presence of the second curvature,
  2

1a h h




 
, but also because of a 

difference in the definition of the disjoining pressure, which is now ( )
a

h
a h




 instead of )(h  in 

Eq. (3). The latter difference results in substantial consequences as shown below in the case of thin 
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capillaries. It is also pointed out that the excess pressure, 
eP , is determined by the vapour pressure in 

the surrounding air and is given by Kelvin’s equation [2]: 

 ln s
e

m

pRT
P

v p
  (4) 

where R, T, and vm are the universal gas constant, the absolute temperature, and the liquid molar 

volume, respectively; sp  and p are the pressures of the saturated vapour and the vapour with which 

the liquid film is in equilibrium, respectively. The latter expression shows that the excess pressure, 

eP , cannot be fixed arbitrary, but is determined by the vapour pressure in the ambient air, p. Note 

also that the Kelvin’s equation expresses the equality of chemical potentials of liquid molecules in 

vapour and liquid phases. Hence, in the case of droplets on a cylindrical capillary, as in the case of 

droplets on flat solid substrates, the equilibrium is possible only at over-saturation, that is, at 0eP  .    

2.1 Effective disjoining/conjoining pressure – outer surface of a cylindrical 
capillary 

 

Consider the equilibrium film of uniform thickness he on the outer surface of a cylindrical 

capillary shown in Fig. 1. It follows from Eq. (2) that 

 
 

( )e e

e e

a
h P

a h a h


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 
 (5) 

Let us introduce an effective disjoining/conjoining pressure as: 

 
 

( ) ( )eff

a
h h

a h a h


    

 
 (6) 

We show below that the above introduced effective disjoining pressure provides the correct 

stability conditions for a film of a uniform thickness on a cylindrical surface. For that purpose 

consider the excess free energy per unit length of the capillary of the equilibrium film of a uniform 

thickness, eh : 

    
2 22 ( ) 2 ( ) 2

e

e e e e sl sv

h

a h P a h a a h dh a     


          
    (7) 

where sl  and sv  are the solid-liquid and solid-vapour interfacial tensions, respectively.  According 

to the equilibrium requirements the following conditions should be satisfied [2]: 

 
2

2
0 and 0e e

e e

d d

dh dh

 
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The first condition results in: 

 ( ) ( ) 0 ( )e e e eff e eP a h a h h P         (9) 
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where the definition of the effective disjoining pressure in Eq. (6) has been used. The second 

equilibrium condition yields 

 ( ) 0e eP a h    (10) 

The effective disjoining/conjoining pressure isotherm defined in Eq. (6) satisfies the stability 

condition Eq. (8). In fact: 
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Substitution of the expression for  eh from Eq. (5) yields 
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1
( ) ( ) 0

eff e
e e e e

e e ee
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 (12) 

according to condition (10). Hence, we conclude that 

 0
eff

e

d

dh


  (13) 

The latter means that the introduced effective disjoining/conjoining pressure according to Eq. (6) 

possesses all necessary properties according to equilibrium conditions in Eq. (8). This effective 

disjoining/conjoining pressure isotherm will be used in Section 3 to investigate the stability of 

uniform liquid films on cylindrical surfaces.  

 

2.2 Effective disjoining/conjoining pressure – inner surface of a cylindrical 
capillary 

 

In the case of liquid layers inside the inner part of the capillary of radius a, the excess free energy 

is defined as: 
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 (14) 

 

which is similar to the expression for the excess free energy on the outer cylindrical surface Eq. (1) 

with terms defined in Fig. 2. 
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Fig. 2. Profile of a meniscus in a cylindrical capillary of radius a. 1 – a spherical part of the 

meniscus of curvature er ; 2 – transition zone between the spherical meniscus and flat films in front; 

3 – flat equilibrium liquid film of thickness eh .  

 

Following the same procedure for the case of the outer cylindrical surface the following equation 

for the liquid meniscus profile inside a capillary can be deduced: 

 

   
3/2 22
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e
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h P

a ha h hh

 
   

 
 (15) 

  

The equation above is different from both equations for a liquid on the outer cylindrical surface 

and on a flat surface, Eq.s (2) and (3), respectively. The effective disjoining isotherm for this case is 

defined as 

 
 

( ) ( )
eff

a
h h

a h a h


   

 
 (16) 

  

The corresponding expression for the excess free energy per unit length of a uniform film on the 

inner cylindrical surface is 

      
222 ( ) 2 2

e

e e e e sl sv

h

a h P a a h a h dh a     


          
    (17) 

The latter expression and the definition in Eq. (16) result in the usual conditions in Eq. (8) which 

describe the stability of the film of a uniform thickness on the inner surface of a cylindrical capillary. 

 

3. Equilibrium contact angle of a droplet on the outer surface of a 
cylindrical capillary 

 

The effective disjoining/conjoining pressure term in Eq. (6) can be used to calculate the 

equilibrium contact angle for the droplet profile in Fig. 1, described by Eq. (2). Let H  be the 

maximum height of the droplet in the centre, that is h(0) = H . Let us introduce a new unknown 

function 
2

1

1
u

h



in this equation and integrate Eq. (2) once, which results in 
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 (18) 

where the condition   0h H   is taken into account. If the disjoining/conjoining pressure in the 

right hand side of the equation is neglected, the ‘outer solution’ is obtained, which describes the drop 

profile not distorted by the disjoining/conjoining pressure action: 

 

2 2

2

2 21
1

( )1

e

H h
P aH ah

a hh 

 
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 (19) 

Prolonging the above ‘outer solution’ to the intersection with the surface of the cylinder, one 

obtains  0 tan eh    , where 
e  is the equilibrium contact angle to be determined. Using the latter 

condition in Eq. (19) one obtains: 
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 (20) 

Now from the whole Eq. (18) it can be concluded that the local profile tends asymptotically to the 

film of uniform thickness, eh . That is, locally the profile satisfies the condition   0eh h  . Using 

this condition it can be concluded that: 
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where the equilibrium thickness of the uniform film is determined from the following equation: 

 
 

( ) ( )eff e e e

e e

a
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
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Substitution of Eq. (21) into Eq. (20) results in the following equation for the determination of the 

equilibrium contact angle: 

  2

2

1 1
cos 1

2
1

2
e

e

e e h

h dh
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
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If the term
2

2

2 2
~

2 2

e e e e eah h h a h h

H aH H H a H

 


 
 in the latter equation is small, one obtains 

 
1

cos 1 ( )

e

e

h

h dh




    (24) 

The functional form of the latter equation is identical to the corresponding expressions for the 

contact angle of a meniscus in a flat capillary and a droplet on a flat substrate [2]. However, there is 

a substantial difference between the former and the latter cases: while the lower limit of integration 
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is the thickness of the uniform film for all mentioned cases, its value is substantially different in each 

equation. This value is determined by the disjoining/conjoining pressure isotherm for flat liquid 

films, and by the effective disjoining/conjoining pressure for curved geometries, as discussed above. 

In the particular case of a droplet on a cylindrical surface (Fig. 1) the thickness of the liquid film 

should be determined from Eq. (22). 

Eq. (24) shows that, indeed, liquid droplets on the outer surface of a cylinder can be at the 

equilibrium only at over-saturation as droplets on a flat substrate. This condition has been observed 

experimentally for water droplets on large carbon nanotubes [15]. Furthermore, analysis of ESEM 

micrographs of frozen benzene droplets on CNTs supports this conclusion (Fig. 3a). A drop of 

hydrocarbon-CNT dispersion was placed on a Peltier cooling stage in the ESEM and the temperature 

rapidly brought to 2 °C, below the freezing temperature of both liquids. Increasing the temperature 

close to the freezing temperature actually led to the immediate evaporation of the hydrocarbons due 

to their low saturation in the ESEM chamber, rather than a slow transition from solid to liquid phase. 

The presence of a thin film enveloping the CNT as a smooth continuation of the drop can also be 

seen in Fig. 3b. Similar methods have also been used to investigate the wetting of polymers on fibres 

and nanotubes to assess the effectiveness of load transfer from the matrix to the fibre reinforcement 

[23, 24]. 

 

Fig. 3. a) ESEM micrograph of two frozen benzene drops around a CNT; b) detail of the intersection 

of a cyclohexane droplet with the outer region of a CNT. 
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4. Equilibrium contact angle of a liquid meniscus inside a 
cylindrical capillary  

The meniscus profile of a liquid plug inside a cylindrical capillary is described by Eq. (15). As in 

the case of droplet on a cylindrical surface, an unknown function 
2

1

1
u

h



is introduced. After 

one integration, Eq. (15) takes the following form 

 

 
2
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P
a h a h dh

a hh 


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



 (25) 

   

where the condition in the centre of the capillary  )(ah  is already taken into account. 

Neglecting the disjoining pressure in the above equation yields   
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2

1
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eP a h

h 



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 (26) 

  

which describes the profile of a spherical meniscus. Continuation of this profile to the intersection 

with the capillary surface results, as in the previous case, in 

 
2 cos

cos 0
2

e e
e e

P a
P

a

 



    , (27) 

as expected. Note that the latter equation means that the equilibrium meniscus exists at 

undersaturation only. From the whole Eq. (25) one concludes that the local profile tends 

asymptotically to the film of uniform thickness, he. That is, locally the profile satisfies the 

condition   0eh h  . Using this condition and Eq. (27) it can be seen from Eq. (25) that 

 
2

1 1 1
cos ( )

1 1 e

e
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h dh
h h
a a






  
   
 

  (28) 

where the thickness of the uniform film is determined from 

 
 

( ) ( )eff e e e

e e

a
h h P

a h a h


    

 
 (29) 

 Assuming that eh a in Eq. (28) the same functional dependence of the cos e  as in Eq. (24) is 

obtained. However, the equilibrium thickness of a flat film should now be determined from Eq. (29). 

Observing Eq.s (24) and (28), a significant difference exists between the equilibrium of drops and 

menisci: in the former case (both for a flat or outer cylindrical substrate) the external supersaturated 

vapour pressure in the ambient air may be arbitrary inside narrow limits, which can be exactly 

determined, as detailed elsewhere [2]. The drop size adjusts to the imposed oversaturated pressure at 

equilibrium. The situation is very much different in the case of an equilibrium meniscus inside a 



 

12 

capillary (both for a slit or circular capillary): there is only a unique vapour pressure allowing the 

meniscus to be at equilibrium. At all other vapour pressures, the meniscus cannot be at equilibrium. 

This phenomenon has indeed been observed experimentally by studying the condensation of water 

inside large carbon nanotubes (200 nm diameter) in the ESEM [14]: For a given temperature, a 

liquid film forms initially on the nanotube walls; the film then thickens with increasing partial 

pressure of water vapour in the ESEM chamber and then jumps to form a liquid plug occupying the 

entire bore of the tube. Upon reduction of the vapour partial pressure, the plug breaks up thinning 

down to a film of thickness approximately equal to the initial one [25]. Similar results have been 

observed also for smaller CNTs (40-60 nm diameter) [15]. 

5. Thermodynamic Stability of thin liquid films on the outer 
surface of a cylindrical capillary 

The thermodynamic stability of thin liquid layers on the outer surface of a cylindrical capillary is 

considered below. Let a  be the radius of the capillary. If the film thickness, h , is much smaller than 

the radius, h a , as a first approximation the isotherm of the disjoining pressure of a planar layer, 

 h , can be used. However, in the general case, the disjoining pressure in thin liquid films on a 

curved substrate, a , is different from the corresponding disjoining pressure on a flat surface. An 

estimation of the distortion of dispersion forces on curved surfaces has been reported elsewhere [2]: 

It has been shown that at / 0.2h a  , the difference between a  and   does not exceed 2.5%. It is 

shown below that capillary effects, on the other hand, have considerably more pronounced influence 

on the thickness and stability of films on non-planar surfaces. Therefore, in the subsequent 

calculations, the disjoining/conjoining pressure isotherm of flat liquid films,  h , is used.    

Let us first examine equilibrium films on the convex surface of a cylinder with a radius a . The 

conditions of the equilibrium for a film on a convex surface of a cylinder of radius a  have the form 

given by Eq.s (9) and (13) where the effective isotherm of disjoining/conjoining pressure is given by 

Eq. (6). The latter can be rewritten as: 

 ( ) ( )eff

a
h h

a h a

 
      

 (30) 

According to the previous equation,  eff h  vanishes at   /h a  . If we adopt 
3

( )
A

h
h

   where 

A  is the Hamaker constant, then 

 

1/3

03
( )  and  ( ) 0eff eff

a A aA
h h h

a h h a





  
             

 (31) 

 The effective disjoining/conjoining pressure isotherm according to Eq. (31) is shown in Fig. 4. 
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Fig. 4. Effective disjoining/conjoining pressure isotherm ( )eff h : Curve 3 according to Eq. (31). 

Curves 1 and 2 are for
3

A

h
 and

a h





, respectively. 

 

For the benzene/CNT system reported in Fig. 3, one can assume a =100 nm, 3 129 10  Nm     

and  [26]. According to Eq. (31) then, , which is consistent with analysis of 

ESEM micrographs. This result can be generalized by stating that at the saturation, / 1sp p  , the 

film on a curved surface does not tend to an infinity (as on a flat surface) but tends to a finite 

thickness h0.  

It is interesting to notice that in the case of complete wetting, 
3

( )
A

h
h

  , the equilibrium 

adsorption does not take place under over-saturation on a flat surface. However, according to the 

effective disjoining/conjoining pressure given by Eq. (30) the adsorption is possible on an outer 

cylindrical surface at over-saturations in the range from 1/ spp  to min/ exp 1m
s

v
p p

RT

 
  

 
. The 

adsorption films, though, are stable only in the region of thicknesses where the stability condition 

Eq. (13) is satisfied. Using this condition, it can be shown that in the case h a  the critical 

thickness for the isotherm corresponding to complete wetting according to Eq. (31) is (Fig. 4): 

 

1/4
23

( *) 0 *eff

a A
h h



 
     

 
 (32) 

The latter conclusion has been verified experimentally for decane films on cylindrical quartz 

capillaries [27]: For a capillary radius a =100 nm, 3 123 10  Nm     and 201.6 10  JA   , a critical 

film thickness * 12 nmh   was obtained.  

However, the loss of stability occurs only at ( ) 0 / 1eff sh p p    , i.e., in the region of 

oversaturation. When / 1sp p  , the films remain stable, but their thickness (in contrast to planar 

films) does not tend to infinity as / 1sp p  , rather toward a limiting value 

1/3

0

Aa
h



 
  
 

. In the 
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case of partial wetting the solution is far more difficult to obtain because the shape of the 

disjoining/conjoining isotherm is more complex [2].  

 

6. Thermodynamic Stability of thin liquid films inside a cylindrical 
capillary 

The effective disjoining pressure isotherm,  eff h , on the inner surface of a cylindrical capillary 

of radius a  will now be considered. The equation for equilibrium of liquid and vapour in this case is, 

according to Eq. (16): 

  ( ) eff e

a
h h P

a h a

 
     

  
 (33) 

The corresponding stability condition is given by Eq. (13). In contrast to convex surfaces (outer 

cylindrical surface), the film thickness h  is evidently limited by the value of the capillary radius. 

However, long before h  approaches the inner radius of the capillary it becomes necessary to account 

for the influence of overlapping fields of surface forces of all sections of the capillary surface. For 

slit pores, the corresponding evaluations have already been undertaken [28].  

6.1 Complete Wetting Case 

In the case of complete wetting the isotherm of disjoining pressure for the flat film is   3

A
h

h
  . 

According to condition (13) the critical thickness *h  can be calculated when the film of a uniform 

thickness on the inner surface loses its stability. Based on Eq. (16) one can conclude that: 

 
3 4

3 ( )
( *) 0

* *
eff

A A a h
h

h a h

 
      (34) 

If one can assume that h a , then the critical thickness is: 

 

1/4
23

*
a A

h


 
  
 

 (35) 

In Fig. 5 a schematic dependency of the effective disjoining/conjoining pressure isotherm is 

shown. 

As an example, the thickness h  of stable water films on the inner surface of a quartz capillary as a 

function of the relative vapour pressure / sp p  is shown in Figure 6. The curves are plotted on the 

basis of Eq. (16), using   3

A
h

h
  , and eP  replaced by its values from Eq. (4) which results in 

 
3

ln s

m

pa A RT

a h h a v p

 
  

  
 (36) 
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using 318 cm / molmv  , 293 KT  , 3 172 10  Nm     and 217 10  JA    [29]. Curve 4 in Fig. 6 is 

the isotherm  / sh p p  for a planar surface, when a  . Curves 1, 2 and 3 were plotted for 

capillaries with radius a  equal to 1, 10 and 100 nm, respectively. Whereas the curve for the largest 

capillary radius (curve 3) resembles the case of a planar surface, where h  when 

/ 1sp p  (curve 1), in the smaller capillaries the isotherm breaks off at / 0.95sp p   (curve 2) and 

/ 0.45sp p   (curve 1). The break-off of the isotherms corresponds to loss of the film of uniform 

thickness stability in accordance with Eq.s (13) and (33).  

 

 

Fig. 5. Effective disjoining/conjoining pressure isotherm on the inner surface of a capillary of radius 

a in the case of complete wetting. Films of a uniform thickness are stable only if their thickness is 

less than *h .For *h h , the film on the inner capillary surface loses stability, and the liquid 

changes over into a more stable state, forming a capillary condensate.  

 

 

 

Fig. 6. Adsorption isotherms,  / sh p p , for films of water in quartz capillaries with radius a = 1 nm 

(curve 1), 10 nm (curve 2), 100 nm (curve 3), and   (curve 4). Only those parts of the curves 

corresponding to stable films are shown. 
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6.2 Partial Wetting Case 
When the contact angle is different from zero, a more complex shape of the disjoining/conjoining 

pressure isotherm has to be used in Eq. (28). Following the technique developed in [29] , we take 

into account the molecular, electrostatic and structural components of surface forces. The equation 

for disjoining pressure isotherm in SI units becomes:  

 
 

2

0 1 2

3 2
( ) ( ) ( ) ( ) exp( / )

6 2
m el st

A
h h h h K h

h h

  





         (37) 

 

where subscripts m, el and st stand for ‘molecular’, ‘electrostatic’ and ‘structural’, respectively; A is 

the Hamaker constant;  is the relative dielectric permittivity of liquid; 0 is electric constant; 1 and 

2 are the electric potentials of the solid-liquid and liquid-air interfaces, respectively. ‘The parameter 

K is positive in the case of forces of hydrophilic structural repulsion, and is negative in the case of 

forces of hydrophobic attraction.’[29] The decay length of structural forces, , is close in order of 

magnitude to the bulk correlation length, that is   1 nm for water [29]. This equation can be used 

for small values of h, where is the inverse Debye length, and when the surface potentials 1 and 

2 are not dependent on film thickness [29]. 

According to this model, ignoring structural forces and accounting only for molecular and 

electrostatic ones gives contact angles not exceeding 60. Therefore, it is necessary to use all three 

above-mentioned components of the disjoining/conjoining pressure to obtain higher contact angle 

values. In the case of water inside a carbon nanotube, contact angles comparable to those of water on 

graphite, in the 80-86° range, have been observed both experimentally and via molecular dynamics 

simulations [4].  As the water/graphite interface is not charged, and the water/air interface is 

charged, we have chosen the difference of surface potentials,  =   , to be non-zero. The 

following parameters are used to obtain a contact angle of 80: A = 710
21

 J,  = 80,  = 0.05 V, 

K = 7.210
7
 N/m

2
,  = 1 nm. The equilibrium thickness of the wetting film on a flat graphite surface 

in this case appeared to be 0.16 nm, which is less than the thickness of one monolayer. Physically it 

can be considered as a sparse monolayer. The shape of the disjoining/conjoining isotherm is shown 

in Fig. 7.  
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Fig. 7. Disjoining/conjoining pressure isotherm for water on flat graphite based on the Eq. (37) using 

parameters: A = 710
21

 J,  = 80,  = 1  2 = 0.05 V, K = 7.210
7
 N/m

2
,  = 1 nm. 

 

Using the above disjoining/conjoining pressure isotherm we calculated the dependence of the 

equilibrium thickness, he, of the wetting film inside a graphitic nanotube of radius a as a function of 

the dimensionless vapour pressure p/ps, where ps is the saturated vapour pressure above the flat 

liquid-air interface according to the following equation 
p

p

v

RT

a
h

ha

a s

m

ln)( 












, where the 

isotherm of the disjoining/conjoining pressure, Eq. (37)  is used. This dependence is presented in 

Fig. 8. 

 

Fig. 8. Equilibrium thickness he of the wetting film on the inside wall of a graphitic nanotube as a 

function of vapour pressure, based on the disjoining pressure isotherm in Figure 7. The radius of the 

graphitic tube a is 1 nm (curve 1), 5 nm (curve 2), 10 nm (curve 3), 100 nm (curve 4), and   

(curve 5). Only those parts of the curves corresponding to stable films are shown.  

 

The condition of film stability is used for the determination of a stable range: 
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 

 
,

0,     where    , ( )
eff e

eff e e

e e

h a a
h a h

h a h a

  
     

   
  

Each curve in Fig. 8 ends with a point corresponding to the critical values of the film thickness, 

*

eh , and vapour pressure */ sp p . When the vapour pressure (and accordingly the film thickness) 

exceeds the critical value, the wetting film becomes unstable and fills up the capillary. The 

dependences of the critical values *

eh  and */ sp p  on a capillary radius, a, for the 

disjoining/conjoining pressure isotherm of a water/graphite system (Fig. 7) are shown in Fig. 9a and 

9b. 

 

 

 

Fig. 9. a) Critical film thickness *h  and b) vapour pressure */ sp p  in a capillary of radius a  for a 

water/graphite system. 

 

The shape of the curve in Fig. 9a is sensitive to the choice of parameters (K, , ) which are 

experimentally unknown: *h  can be a monotonically increasing or decreasing function of the 

capillary radius a , or have a maximum as in Fig. 9a. From Fig. 9b one can see that, for the above 

considered shape of the disjoining/conjoining pressure isotherm (Figure 7), in almost entire range of 

considered capillary radii a , the wetting film loses its stability and fills up the capillary at strong 

oversaturation of the vapour. 

 

 

6.3 Limit of Validity of Continuum Model 
 

In Figure 8, the condition h<<a is fulfilled in the entire region of physically realizable film 

thicknesses, *h h , for curves 2 to 5. That is, capillary condensation starts much earlier than when 

the capillary is filled with liquid. Even though the thickness of adsorbed films with equal values of 
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p/ps is bigger in a capillary with a smaller capillary radius, the region of their existence is curtailed 

quite substantially. When *h h , the films lose stability and the capillary is filled with condensate. 

As discussed in the introduction, the validity of the continuum model on which this work is based 

has been called into question for liquids inside hydrophobic carbon nanotubes (and more in general 

in nanoscale channels) with radius as small as 1-2 nm. As such, one has to question whether the 

condition h a  is satisfied for the smallest capillaries, for example 1a  nm, in Fig. 8. As can be 

seen in Fig.s 9a and 9b the approximation h a can no longer be considered valid below a radius 

size 1 2 nma  . This result confirms molecular dynamics and experimental observations showing 

a breakdown of the continuum model below ~ 2nm [20, 21].  

 

7. Line Tension 
In the above calculations of macroscopic contact angles and/or stability of layers of a uniform 

thickness, the line tension term [30] is absent. This is due to the choice of considering a ‘real’ drop 

profile which includes a transition zone between the droplet and the liquid film absorbed on the solid 

surface (Fig. 10a). This complex profile results from the action of capillary and surfaces forces 

(disjoining/conjoining pressure), as discussed in Section 1. On the other hand, if one replaces the real 

profile with an idealised one, where the spherical cap is extended down to a sharp intersection with 

the liquid film of a uniform thickness (Fig. 10b), then along a new apparent three phase contact line 

a line tension should be introduced. It is finally noted that the line tension can be calculated from the 

more general model presented here according to a procedure described in [2].       

 

 

Fig. 10. a) Real liquid profile calculated using the disjoining pressure isotherm, Eq. (6); b) Idealized 

liquid profile, where a spherical cap is extended down to a sharp intersection with a thin liquid film a 

the apparent three phase contact line (arrows). 

 

8. Conclusions  
The properties of films on curved surfaces that have been examined, i.e., film stability and 

thickness, should be taken into account in investigating adsorption processes in fine-porous solids, 

wetting of nanostructured surfaces, and flow of liquids through nanotubes and nanochannels. 
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An effective disjoining/conjoining pressure isotherm has been deduced for liquid films of uniform 

thickness on an inner or an outer cylindrical surface, with the effective disjoining/conjoining 

pressure being a function of the surface curvature. From the latter, the equilibrium contact angles of 

drops on an outer or inner surface of a cylindrical capillary have been calculated, showing that the 

expressions for equilibrium contact angles vary from the case of a drop on a flat surface, in view of 

the difference in thickness of the film of uniform thickness with which the bulk liquid (drops or 

menisci) is at equilibrium.  

Calculations for water in hydrophilic quartz nanocapillaries and hydrophobic carbon nanotubes 

have confirmed MD and experimental results showing a size threshold below which the continuum 

model no longer applies due to the effects of nanoscale confinement. 
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