3,213 research outputs found

    The Effect of Sulphate Doping on NanosizedTiO2andMoOx/TiO2Catalysts in Cyclohexane Photooxidative Dehydrogenation

    Get PDF
    The effect of sulphate doping of titania in promoting activity and selectivity ofMoOx/TiO2catalysts for the cyclohexane photooxidative dehydrogenation has been investigated in a gas-solid fluidized bed reactor. Sulphate and/or molybdate-modified titania catalysts were prepared by incipient wet impregnation of nanosized (5–10 nm crystallite size) samples. At 60% of titania surface coverage byMoOx, sulphate surface density was obtained up to 19μmol/m2without formation ofMoO3. The catalysts were characterized byN2adsorption-desorption at−196∘C, micro-Raman and UV-visible reflectance spectroscopy, thermogravimetric analysis coupled with mass spectroscopy (TG-MS), and mass titration. Unsulphated and sulphated titania are both active in cyclohexane total oxidation, but sulphate doping of titania has a detrimental effect on the reaction rate. On Mo-based catalysts, polymolybdate species enabled sulphated titania to convert cyclohexane to benzene (99% selectivity) and cyclohexene, reducing at zero the formation ofCO2. Cyclohexane conversion to benzene is almost linearly dependent on sulphate surface density, resulting in enhanced yield to benzene. The enhanced photooxidative dehydrogenation activity and benzene yield by sulphate doping could be attributed to the increase of surface acidity and, as a consequence, of cyclohexane adsorption

    Nambu-Jona-Lasinio model with Wilson fermions

    Get PDF
    12 pages, 5 figuresWe present a lattice study of a Nambu Jona-Lasinio (NJL) model using Wilson fermions. Four fermion interactions are a natural part of several extensions of the Standard Model, appearing as a low energy description of a more fundamental theory. In models of dynamical electroweak symmetry breaking they are used to endow the Standard Model fermions with masses. In infrared conformal models these interaction, when sufficiently strong, can alter the dynamics of the fixed point, turning the theory into a (near) conformal model with desirable features for model building. As a first step toward the nonperturbative study of these models, we study the phase space of the ungauged NJL model

    The Electroweak Phase Transition in Ultra Minimal Technicolor

    Full text link
    We unveil the temperature-dependent electroweak phase transition in new extensions of the Standard Model in which the electroweak symmetry is spontaneously broken via strongly coupled, nearly-conformal dynamics achieved by the means of multiple matter representations. In particular, we focus on the low energy effective theory introduced to describe Ultra Minimal Walking Technicolor at the phase transition. Using the one-loop effective potential with ring improvement, we identify regions of parameter space which yield a strong first order transition. A striking feature of the model is the existence of a second phase transition associated to the electroweak-singlet sector. The interplay between these two transitions leads to an extremely rich phase diagram.Comment: 38 RevTeX pages, 9 figure

    Flow regimes study within the Strait of Gibraltar using a high-performance numerical model

    Get PDF
    A three-dimensional sigma coordinate free-surface high-performance model is used to investigate the flow regimes within the Strait of Gibraltar. High performances are achieved through a directive-based, MPI-like, parallelization of the code, obtained using SMS tool. The model makes use of a coastal-following, curvilinear orthogonal grid, that includes the Gulf of Cadiz and the Alboran Sea, reaching very high resolution in the Strait. Four experiments with different initial salinity conditions representing the present and possible future climate conditions over the Mediterranean basin have been performed. Model results, analysed by means of the three-layer composite Froude number theory, have shown two different possible regimes within the strait; for the present climate condition the strait is subjected to a sub-maximal regimewhilefor possible future climate conditions a maximal regime can be reached

    Composite Inflation Setup and Glueball Inflation

    Get PDF
    We explore the paradigm according to which inflation is driven by a four-dimensional strongly coupled dynamics coupled non-minimally to gravity. We start by introducing the general setup, both in the metric and Palatini formulation, for generic models of composite inflation. We then analyze the relevant example where the inflaton is identified with the glueball field of a pure Yang-Mills theory. We introduce the dilatonic-like glueball action which is obtained by requiring saturation of the underlying Yang-Mills trace anomaly at the effective action level. We couple the resulting action non-minimally to gravity. We demonstrate that it is possible to achieve successful inflation with the confining scale of the underlying Yang-Mills theory naturally of the order of the grand unified energy scale. We also argue that within the metric formulation models of composite inflation lead to a more consistent picture than within the Palatini one. Finally we show that, in the metric formulation, the model nicely respects tree-level unitarity for the scattering of the inflaton field all the way to the Planck scale.Comment: 16 pages, RevTeX. 2 new sessions have been added, one on graviton scattering and the other on the relevant energy scales of the theory. References added. Main results are unchanged. Version to match the one to appear in Phys.Rev.

    Template Composite Dark Matter : SU(2) gauge theory with 2 fundamental flavours

    Get PDF
    Contribution to proceedings of the 33rd International Symposium on Lattice Field Theory (Lattice 2015), 14-18 July 2015, Kobe, JapanWe present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. We discuss how the model can be used as a template for composite Dark Matter (DM). We estimate one particular interaction of the DM candidate with the Standard Model : the interaction through photon exchange computing the electric polarizability of the DM candidate. Finally, we briefly discuss the viability of the model given the present experimental constraints

    Design of a Base-Board for arrays of closely-packed Multi-Anode Photo-Multipliers

    Full text link
    We describe the design of a Base-Board to house Multi-Anode Photo-Multipliers for use in large-area arrays of light sensors. The goals, the design, the results of tests on the prototypes and future developments are presented.Comment: 16 pages, 5 figures, submitted to Nucl. Instrum. and Meth.

    Photocatalytic ethanol oxidative dehydrogenation over Pt/TiO 2: Effect of the addition of blue phosphors

    Get PDF
    Ethanol oxidative dehydrogenation over Pt/TiO 2 photocatalyst, in the presence and absence of blue phosphors, was performed. The catalyst was prepared by photodeposition of Pt on sulphated TiO 2. This material was tested in a gas-solid photocatalytic fluidized bed reactor at high illumination efficiency. The effect of the addition of blue phosphors into the fluidized bed has been evaluated. The synthesized catalysts were extensively characterized by different techniques. Pt/TiO 2 with a loading of 0.5wt of Pt appeared to be an active photocatalyst in the selective partial oxidation of ethanol to acetaldehyde improving its activity and selectivity compared to pure TiO 2. In the same way, a notable enhancement of ethanol conversion in the presence of the blue phosphors has been obtained. The blue phosphors produced an increase in the level of ethanol conversion over the Pt/TiO 2 catalyst, keeping at the same time the high selectivity to acetaldehyde. Copyright © 2012 J. J. Murcia et al.Peer Reviewe
    corecore