14,199 research outputs found
2MASS J154043.42-510135.7: a new addition to the 5 pc population
The aim of the project is to find the stars nearest to the Sun and to
contribute to the completion of the stellar and substellar census of the solar
neighbourhood. We identified a new late-M dwarf within 5 pc, looking for high
proper motion sources in the 2MASS-WISE cross-match. We collected astrometric
and photometric data available from public large-scale surveys. We complemented
this information with low-resolution optical and near-infrared spectroscopy
with instrumentation on the ESO NTT to confirm the nature of our candidate. We
also present a high-quality medium-resolution VLT/X-shooter spectrum covering
the 400 to 2500 nm wavelength range. We classify this new neighbour as an
M7.00.5 dwarf using spectral templates from the Sloan Digital Sky Survey
and spectral indices. Lithium absorption at 670.8 nm is not detected in the
X-shooter spectrum, indicating that the M7 dwarf is older than 600 Myr and more
massive than 0.06 M. We also derive a trigonometric distance of 4.4
pc, in agreement with the spectroscopic distance estimate, making
2MASS\,J154043.42510135.7 the nearest M7 dwarf to the Sun. This
trigonometric distance is somewhat closer than the 6 pc distance reported
by the ALLWISE team, who independently identified this object recently. This
discovery represents an increase of 25\% in the number of M7--M8 dwarfs already
known at distances closer than 8\,pc from our Sun. We derive a density of
\,=\,1.90.910\,pc for M7 dwarfs in the 8 pc
volume, a value similar to those quoted in the literature. This new ultracool
dwarf is among the 50 nearest systems to the Sun, demonstrating that our
current knowledge of the stellar census within the 5 pc sample remains
incomplete. 2M1540 represents a unique opportunity to search for extrasolar
planets around ultracool dwarfs due to its proximity and brightness.Comment: 8 pages, 5 figures. Acepted in Astronomy & Astrophysics (15/05/2005
Binary frequency of planet-host stars at wide separations: A new brown dwarf companion to a planet-host star
The aim of the project is to improve our knowledge on the multiplicity of
planet-host stars at wide physical separations.
We cross-matched approximately 6200 square degree area of the Southern sky
imaged by the Visible Infrared Survey Telescope for Astronomy (VISTA)
Hemisphere Survey (VHS) with the Two Micron All Sky Survey (2MASS) to look for
wide common proper motion companions to known planet-host stars. We
complemented our astrometric search with photometric criteria.
We confirmed spectroscopically the co-moving nature of seven sources out of
16 companion candidates and discarded eight, while the remaining one stays as a
candidate. Among these new wide companions to planet-host stars, we discovered
a T4.5 dwarf companion at 6.3 arcmin (~9000 au) from HIP70849, a K7V star which
hosts a 9 Jupiter mass planet with an eccentric orbit. We also report two new
stellar M dwarf companions to one G and one metal-rich K star. We infer stellar
and substellar binary frequencies for our complete sample of 37 targets of
5.4+/-3.8% and 2.7+/-2.7% (1 sigma confidence level), respectively, for
projected physical separations larger than ~60-160 au assuming the range of
distances of planet-host stars (24-75 pc). These values are comparable to the
frequencies of non planet-host stars. We find that the period-eccentricity
trend holds with a lack of multiple systems with planets at large
eccentricities (e > 0.2) for periods less than 40 days. However, the lack of
planets more massive than 2.5 Jupiter masses and short periods (<40 days)
orbiting single stars is not so obvious due to recent discoveries by
ground-based transit surveys and space missions.Comment: Accepted for publication in A&A, 13 pages, 5 figures, 3 tables,
optical spectra will be available at CDS Strasbour
Gain spectroscopy of a type-II VECSEL chip
Using optical pump-white light probe spectroscopy the gain dynamics is
investigated for a VECSEL chip which is based on a type-II heterostructure. The
active region the chip consists of a GaAs/(GaIn)As/Ga(AsSb)/(GaIn)As/GaAs
multiple quantum well. For this structure, a fully microscopic theory predicts
a modal room temperature gain at a wavelength of 1170 nm, which is confirmed by
experimental spectra. The results show a gain buildup on the type-II chip which
is delayed relative to that of a type-I chip. This slower gain dynamics is
attributed to a diminished cooling rate arising from reduced electron-hole
scattering.Comment: 4 pages, 4 figure
Recommended from our members
The Yin and Yang of non-immune and immune responses in meibomian gland dysfunction
Meibomian gland dysfunction (MGD) is a leading cause of dry eye disease and one of the most common ophthalmic conditions encountered in eye clinics worldwide. These holocrine glands are situated in the eyelid, where they produce specialized lipids, or meibum, needed to lubricate the eye surface and slow tear film evaporation - functions which are critical to preserving high-resolution vision. MGD results in tear instability, rapid tear evaporation, changes in local microflora, and dry eye disease, amongst other pathological entities. While studies identifying the mechanisms of MGD have generally focused on gland obstruction, we now know that age is a major risk factor for MGD that is associated with abnormal cell differentiation and renewal. It is also now appreciated that immune-inflammatory disorders, such as certain autoimmune diseases and atopy, may trigger MGD, as demonstrated through a T cell-driven neutrophil response. Here, we independently discuss the underlying roles of gland and immune related factors in MGD, as well as the integration of these two distinct mechanisms into a unified perspective that may aid future studies. From this unique standpoint, we propose a revised model in which glandular dysfunction and immunopathogenic pathways are not primary versus secondary contributors in MGD, but are fluid, interactive, and dynamic, which we likened to the Yin and Yang of MGD
Post-synthetic ligand exchange as a route to improve the affinity of ZIF-67 towards CO2
The Zeolitic Imidazolate Framework 67 (ZIF-67) is a highly promising material owing to its exceptional thermal stability, large specific surface area, cost-effectiveness, and versatile applications. One of the potential applications of ZIF-67 is gas separation processes, among which the separation of CO2/CH4 mixtures has attracted great interest nowadays in the biogas sector. However, when it comes to CO2/CH4 separation, ZIF-67 falls short as it lacks the desired selectivity despite its high adsorption capacity. This limitation arises from its relatively low affinity towards CO2. In this study, we have addressed this issue by partially exchanging the ligand of ZIF-67, specifically replacing 2-methylimidazole with 1,2,4 (1H) triazole, which introduces an additional nitrogen atom. This modification resulted in ZIF-67 showing significantly enhanced affinity towards CO2 and, as a result, greater selectivity towards CO2 over CH4. The modified materials underwent thorough characterization using various techniques, and their adsorption capacity was evaluated through high-pressure adsorption isotherms. Furthermore, their separation performance was assessed using the Ideal Solution Adsorption Theory, which provided valuable insights into their potential for efficient gas separation.Financial support from Ministerio de Ciencia e Innovación (Spain, PID2020-116998RB-I00) is gratefully acknowledged. Conselleria de Innovacion, Universidades, Ciencia y Sociedad Digital (CIPROM/2021/022). This study forms part of the Advanced Materials programme and was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and by Generalitat Valenciana
Ianus: an Adpative FPGA Computer
Dedicated machines designed for specific computational algorithms can
outperform conventional computers by several orders of magnitude. In this note
we describe {\it Ianus}, a new generation FPGA based machine and its basic
features: hardware integration and wide reprogrammability. Our goal is to build
a machine that can fully exploit the performance potential of new generation
FPGA devices. We also plan a software platform which simplifies its
programming, in order to extend its intended range of application to a wide
class of interesting and computationally demanding problems. The decision to
develop a dedicated processor is a complex one, involving careful assessment of
its performance lead, during its expected lifetime, over traditional computers,
taking into account their performance increase, as predicted by Moore's law. We
discuss this point in detail
An in-depth view of the microscopic dynamics of Ising spin glasses at fixed temperature
Using the dedicated computer Janus, we follow the nonequilibrium dynamics of
the Ising spin glass in three dimensions for eleven orders of magnitude. The
use of integral estimators for the coherence and correlation lengths allows us
to study dynamic heterogeneities and the presence of a replicon mode and to
obtain safe bounds on the Edwards-Anderson order parameter below the critical
temperature. We obtain good agreement with experimental determinations of the
temperature-dependent decay exponents for the thermoremanent magnetization.
This magnitude is observed to scale with the much harder to measure coherence
length, a potentially useful result for experimentalists. The exponents for
energy relaxation display a linear dependence on temperature and reasonable
extrapolations to the critical point. We conclude examining the time growth of
the coherence length, with a comparison of critical and activated dynamics.Comment: 38 pages, 26 figure
Albumin-induced apoptosis of tubular cells is modulated by BASP1
Albuminuria promotes tubular injury and cell death, and is associated with faster progression of chronic kidney disease (CKD) to
end-stage renal disease. However, the molecular mechanisms regulating tubular cell death in response to albuminuria are not fully
understood. Brain abundant signal protein 1 (BASP1) was recently shown to mediate glucose-induced apoptosis in tubular cells.
We have studied the role of BASP1 in albumin-induced tubular cell death. BASP1 expression was studied in experimental
puromycin aminonucleoside-induced nephrotic syndrome in rats and in human nephrotic syndrome. The role of BASP1 in
albumin-induced apoptosis was studied in cultured human HK2 proximal tubular epithelial cells. Puromycin aminonucleoside
induced proteinuria and increased total kidney BASP1 mRNA and protein expression. Immunohistochemistry localized the
increased BASP1 to tubular cells. BASP1 expression colocalized with deoxynucleotidyl-transferase-mediated dUTP nick-end
labeling staining for apoptotic cells. Increased tubular BASP1 expression was observed in human proteinuric nephropathy by
immunohistochemistry, providing evidence for potential clinical relevance. In cultured tubular cells, albumin induced apoptosis
and increased BASP1 mRNA and protein expression at 6–48 h. Confocal microscopy localized the increased BASP1 expression
in albumin-treated cells mainly to the perinuclear area. A peripheral location near the cell membrane was more conspicuous in
albumin-treated apoptotic cells, where it colocalized with actin. Inhibition of BASP1 expression by a BASP1 siRNA protected from
albumin-induced apoptosis. In conclusion, albumin-induced apoptosis in tubular cells is BASP1-dependent. This information may
be used to design novel therapeutic approaches to slow CKD progression based on protection of tubular cells from the adverse
consequences of albuminuriaGrant support: FIS PS09/00447, PI13/00047, CP14/
00133, ISCIII-RETIC, REDinREN/RD06/0016/and RD012/0021 FEDER funds,
Comunidad de Madrid/CIFRA S2010/BMD-2378. Salary support: FIS to MDSN
and ABS (Miguel Servet), Beatriz Fernandez-Fernandez (Rio Hortega). Programa
Intensificación Actividad Investigadora (ISCIII/Agencia Laín-Entralgo/CM) to AO.
IIS-FJD Biobank RD09/0076/0010
Matching microscopic and macroscopic responses in glasses
We first reproduce on the Janus and Janus II computers a milestone experiment
that measures the spin-glass coherence length through the lowering of
free-energy barriers induced by the Zeeman effect. Secondly we determine the
scaling behavior that allows a quantitative analysis of a new experiment
reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett.
118, 157203 (2017)]. The value of the coherence length estimated through the
analysis of microscopic correlation functions turns out to be quantitatively
consistent with its measurement through macroscopic response functions.
Further, non-linear susceptibilities, recently measured in glass-forming
liquids, scale as powers of the same microscopic length.Comment: 6 pages, 4 figure
- …