167 research outputs found

    Volumetric Absorptive Microsampling (VAMS) for Targeted LC-MS/MS Determination of Tryptophan-Related Biomarkers

    Get PDF
    L-Tryptophan (TRP) metabolites and related biomarkers play crucial roles in physiological functions, and their imbalances are implicated in central nervous system pathologies and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, schizophrenia and depression. The measurement of TRP metabolites and related biomarkers possesses great potential to elucidate the disease mechanisms, aid preclinical drug development, highlight potential therapeutic targets and evaluate the outcomes of therapeutic interventions. An effective, straightforward, sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of 24 TRP-related compounds in miniaturised murine whole blood samples. Sampling and sample pretreatment miniaturisation were achieved thanks to the development of a volumetric dried blood microsampling approach. Volumetric absorptive microsampling (VAMS) allows the accurate sampling of microvolumes of blood with advantages including, but not limited to, minimal sampling invasiveness, logistical improvements, method sustainability in terms of solvents and energy consumption, and improvement of animal studies in the framework of the 3Rs (Replacement, Reduction and Refinement) principles on animal welfare. The VAMS-LC-MS/MS method exhibited good selectivity, and correlation coefficient values for the calibration curves of each analyte were >0.9987. The limits of quantitation ranged from 0.1 to 25 ng/mL. The intra- and inter-day precisions in terms of RSD were <9.6%. All analytes were stable in whole blood VAMS samples stored at room temperature for at least 30 days with analyte losses < 14%. The developed method was successfully applied to the analysis of biological samples from mice, leading to the unambiguous determination of all the considered target analytes. This method can therefore be applied to analyse TRP metabolites and related biomarkers levels to monitor disease states, perform mechanistic studies and investigate the outcomes of therapeutic interventions

    SPAD array camera for localization based super resolution microscopy

    Get PDF
    Super resolution microscopy by localization is a stochastic based approach, where the resolution is determined by the localization accuracy [1] [2] [3]. The accuracy of localization heavily depends on the statistics of the data obtained with a camera during imaging. Current state of the art EMCCD (electron multiplying charge coupled device) cameras have frame rates up to 200 fps and hence a limited temporal resolution between frames. This can lead to ambiguities in localization. For example, a single fluorescent spot appearing at the same location in two successive frames is not considered for localization, because it is not clear, whether the spot arises from a single fluorophore in ON state for a long time or from two adjacent fluorophores, which switches ON and OFF. In this work, we explore for the first time the use of a single-photon counting SPAD (single photon avalanche diodes) array camera for super resolution microscopy. These cameras can provide high frame rates (up to 375000 fps), with improved temporal resolution between the frames, enabling a more accurate view of events that can be precisely tracked over time. The rich information obtained from such large number of frames leads to more accurate statistical estimations for overcoming the current ambiguities in localization. Also, SPAD array cameras are capable of reading frames having pixels depth of 1-bit. [4]. Such, a fine granularity enables the user to add any number of frames for identifying and localizing individual events with a very high accuracy. SPADs have been success fully used in performing time-resolved imaging measurements like FLIM (fluorescence life time imaging measurements). This allows us to extend the possibility of performing FLIM and super resolution imaging simultaneously. As a result, two different fluorophores can be separated based on their unique life times, enabling multi-channel operations using a single camera. An example of a preliminary image captured using a SPAD array camera is depicted in Figure

    Paclitaxel, vinorelbine and 5-fluorouracil in breast cancer patients pretreated with adjuvant anthracyclines

    Get PDF
    We investigated the activity and toxicity of a combination of vinorelbine (VNB), paclitaxel (PTX) and 5-fluorouracil (5-FU) continuous infusion administered as first-line chemotherapy in metastatic breast cancer patients pretreated with adjuvant anthracyclines. A total of 61 patients received a regimen consisting of VNB 25 mg m−2 on days 1 and 15, PTX 60 mg m−2 on days 1, 8 and 15 and continuous infusion of 5-FU at 200 mg m−2 every day. Cycles were repeated every 28 days. Disease response was evaluated by both RECIST and World Health Organization (WHO) criteria. Objective responses were recorded in 39 of 61 patients (64.0%) assessed by WHO and in 36 of 50 patients (72.0%) assessable by RECIST criteria. Complete remission occurred in 15 (24.6%) and 14 patients (28.0%), respectively. The median time to progression and overall survival of entire population was 10.6 and 27.3 months, respectively, and median duration of complete response was 14.8 months. The dose-limiting toxicity was myelosuppression (leucopenia grade 3/4 in 52.5% of patients). Grade 3/4 nonhaematologic toxicities included mucositis/diarrhoea in 13.1%, skin in 3.3% and cardiac in 1.6% of patients. Grade 2/3 neurotoxicity was observed in five patients (7.2%). The VNB, PTX and 5-FU continuous infusion combination regimen was active and manageable. Complete responses were frequent and durable

    Cys34-cysteinylated human serum albumin is a sensitive plasma marker in oxidative stress-related chronic diseases

    Get PDF
    The degree of oxidized cysteine (Cys) 34 in human serum albumin (HSA), as determined by high performance liquid chromatography (HPLC), is correlated with oxidative stress related pathological conditions. In order to further characterize the oxidation of Cys34-HSA at the molecular level and to develop a suitable analytical method for a rapid and sensitive clinical laboratory analysis, the use of electrospray ionization time-of-flight mass spectrometer (ESI-TOFMS) was evaluated. A marked increase in the cysteinylation of Cys34 occurs in chronic liver and kidney diseases and diabetes mellitus. A significant positive correlation was observed between the Cys-Cys34-HSA fraction of plasma samples obtained from 229 patients, as determined by ESI-TOFMS, and the degree of oxidized Cys34-HSA determined by HPLC. The Cys-Cys34-HSA fraction was significantly increased with the progression of liver cirrhosis, and was reduced by branched chain amino acids (BCAA) treatment. The changes in the Cys-Cys34-HSA fraction were significantly correlated with the alternations of the plasma levels of advanced oxidized protein products, an oxidative stress marker for proteins. The binding ability of endogenous substances (bilirubin and tryptophan) and drugs (warfarin and diazepam) to HSA purified from chronic liver disease patients were significantly suppressed but significantly improved by BCAA supplementation. Interestingly, the changes in this physiological function of HSA in chronic liver disease were correlated with the Cys-Cys34-HSA fraction. In conclusion, ESI-TOFMS is a suitable high throughput method for the rapid and sensitive quantification of Cys-Cys34-HSA in a large number of samples for evaluating oxidative stress related chronic disease progression or in response to a treatment

    Impact of Chronic Lung Disease on Very Low Birth Weight infants: a collaborative study of the Italian Group of Neonatal Pneumology

    Get PDF
    Objective. To evaluate the incidence and risk factors for chronic lung disease in a population of very low birth weight infants. Methods. In a prospective multicentric trial all very low birth weight infants (< 1500 g) accepted in 36 Italian Neonatal Intensive care units were studied from February 89 to January 99. For each patient were recorded maternal history, perinatal events, respiratory disease, infections, patent ductus arteriosus, retinopathy of prematurity, intraventricular haemorrhage and final outcome. Logistic regression analysis was performed in a multivariate assessment of risk factors for chronic lung disease. Results. In the study were included 1634 patients: 1387 infants survived beyond 36 weeks and 6.9% of them still oxygen dependent. The incidence of chronic lung disease was higher among babies with a gestational age of < 28 weeks and weight \ub2 1000 g. The multivariate analysis showed that low birth weight, respiratory distress syndrome, persistent ductus arteriosus and sepsis were the main risk factors. Conclusions. In our study the incidence of chronic lung disease was relatively lo

    New Hybrid Properties of TiO2 Nanoparticles Surface Modified With Catecholate Type Ligands

    Get PDF
    Surface modification of nanocrystalline TiO2 particles (45 Å) with bidentate benzene derivatives (catechol, pyrogallol, and gallic acid) was found to alter optical properties of nanoparticles. The formation of the inner-sphere charge–transfer complexes results in a red shift of the semiconductor absorption compared to unmodified nanocrystallites. The binding structures were investigated by using FTIR spectroscopy. The investigated ligands have the optimal geometry for chelating surface Ti atoms, resulting in ring coordination complexes (catecholate type of binuclear bidentate binding–bridging) thus restoring in six-coordinated octahedral geometry of surface Ti atoms. From the Benesi–Hildebrand plot, the stability constants at pH 2 of the order 103 M−1 have been determined

    Loss-of-Function Mutations in PTPN11 Cause Metachondromatosis, but Not Ollier Disease or Maffucci Syndrome

    Get PDF
    Metachondromatosis (MC) is a rare, autosomal dominant, incompletely penetrant combined exostosis and enchondromatosis tumor syndrome. MC is clinically distinct from other multiple exostosis or multiple enchondromatosis syndromes and is unlinked to EXT1 and EXT2, the genes responsible for autosomal dominant multiple osteochondromas (MO). To identify a gene for MC, we performed linkage analysis with high-density SNP arrays in a single family, used a targeted array to capture exons and promoter sequences from the linked interval in 16 participants from 11 MC families, and sequenced the captured DNA using high-throughput parallel sequencing technologies. DNA capture and parallel sequencing identified heterozygous putative loss-of-function mutations in PTPN11 in 4 of the 11 families. Sanger sequence analysis of PTPN11 coding regions in a total of 17 MC families identified mutations in 10 of them (5 frameshift, 2 nonsense, and 3 splice-site mutations). Copy number analysis of sequencing reads from a second targeted capture that included the entire PTPN11 gene identified an additional family with a 15 kb deletion spanning exon 7 of PTPN11. Microdissected MC lesions from two patients with PTPN11 mutations demonstrated loss-of-heterozygosity for the wild-type allele. We next sequenced PTPN11 in DNA samples from 54 patients with the multiple enchondromatosis disorders Ollier disease or Maffucci syndrome, but found no coding sequence PTPN11 mutations. We conclude that heterozygous loss-of-function mutations in PTPN11 are a frequent cause of MC, that lesions in patients with MC appear to arise following a “second hit,” that MC may be locus heterogeneous since 1 familial and 5 sporadically occurring cases lacked obvious disease-causing PTPN11 mutations, and that PTPN11 mutations are not a common cause of Ollier disease or Maffucci syndrome
    corecore