127 research outputs found

    Bivalent engagement of endothelial surface antigens is critical to prolonged surface targeting and protein delivery in vivo

    Full text link
    Targeted drug delivery to the endothelium has the potential to generate localized therapeutic effects at the blood- tissue interface. For some therapeutic cargoes, it is essential to maintain contact with the bloodstream to exert protective effects. The pharmacokinetics (PK) of endothelial surface- targeted affinity ligands and biotherapeutic cargo remain a largely unexplored area, despite obvious translational implications for this strategy. To bridge this gap, we site- specifically radiolabeled mono- (scFv) and bivalent (mAb) affinity ligands specific for the endothelial cell adhesion molecules, PECAM- 1 (CD31) and ICAM- 1 (CD54). Radiotracing revealed similar lung biodistribution at 30 minutes post- injection (79.3% ± 4.2% vs 80.4% ± 10.6% ID/g for αICAM and 58.9% ± 3.6% ID/g vs. 47.7% ± 5.8% ID/g for αPECAM mAb vs. scFv), but marked differences in organ residence time, with antibodies demonstrating an order of magnitude greater area under the lung concentration vs. time curve (AUCinf 1698 ± 352 vs. 53.3 ± 7.9 ID/g*hrs for αICAM and 1023 ± 507 vs. 114 ± 37 ID/g*hrs for αPECAM mAb vs scFv). A physiologically based pharmacokinetic model, fit to and validated using these data, indicated contributions from both superior binding characteristics and prolonged circulation time supporting multiple binding- detachment cycles. We tested the ability of each affinity ligand to deliver a prototypical surface cargo, thrombomodulin (TM), using one- to- one protein conjugates. Bivalent mAb- TM was superior to monovalent scFv- TM in both pulmonary targeting and lung residence time (AUCinf 141 ± 3.2 vs 12.4 ± 4.2 ID/g*hrs for ICAM and 188 ± 90 vs 34.7 ± 19.9 ID/g*hrs for PECAM), despite having similar blood PK, indicating that binding strength is more important parameter than the kinetics of binding. To maximize bivalent target engagement, we synthesized an oriented, end- to- end anti- ICAM mAb- TM conjugate and found that this therapeutic had the best lung residence time (AUCinf 253 ± 18 ID/g*hrs) of all TM modalities. These observations have implications not only for the delivery of TM, but also potentially all therapeutics targeted to the endothelial surface.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156501/3/fsb220760_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156501/2/fsb220760-sup-0001-Supinfo.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156501/1/fsb220760.pd

    Corrigendum to "European contribution to the study of ROS:A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)" [Redox Biol. 13 (2017) 94-162]

    Get PDF
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed

    Nanobiotechnology for the Therapeutic Targeting of Cancer Cells in Blood

    Get PDF
    corecore