32 research outputs found

    Overexpression and characterization of dimeric and tetrameric forms of recombinant serine hydroxymethyltransferase from Bacillus stearothermophilus

    Get PDF
    Serine hydroxymethyltransferase (SHMT), a pyridoxal-5′-phosphate (PLP) dependent enzyme catalyzes the interconversion of L-Ser and Gly using tetrahydrofolate as a substrate. The gene encoding for SHMT was amplified by PCR from genomic DNA of Bacillus stearothermophilus and the PCR product was cloned and overexpressed in Escherichia coli. The purified recombinant enzyme was isolated as a mixture of dimer (90%) and tetramer (10%). This is the first report demonstrating the existence of SHMT as a dimer and tetramer in the same organism. The specific activities at 37°C of the dimeric and tetrameric forms were 6.7 U/mg and 4.1 U/mg, respectively. The purified dimer was extremely thermostable with a Tm of 85°C in the presence of PLP and L-Ser. The temperature optimum of the dimer was 80°C with a specific activity of 32×4 U/mg at this temperature. The enzyme catalyzed tetrahydrofolate-independent reactions at a slower rate compared to the tetrahydrofolate-dependent retro-aldol cleavage of L-Ser. The interaction with substrates and their analogues indicated that the orientation of PLP ring of B. stearothermophilus SHMT was probably different from sheep liver cytosolic recombinant SHMT (scSHMT)

    Piperine Attenuates Cigarette Smoke-Induced Oxidative Stress, Lung Inflammation, and Epithelial-Mesenchymal Transition by Modulating the SIRT1/Nrf2 Axis

    Get PDF
    Piperine (PIP) is a major phytoconstituent in black pepper which is responsible for various pharmacological actions such as anti-inflammatory, antioxidant, and antitumor activity. To investigate the effects and mechanisms of PIP on cigarette smoke (CS)-induced lung pathology using both in-vitro and in-vivo models. BEAS-2B and A549 cells were exposed to CS extract (CSE) for 48 h; BALB/c mice were exposed to CS (9 cigarettes/day, 4 days) to induce features of airway disease. PIP at doses of (0.25, 1.25, and 6.25 µM, in vitro; 1 and 10 mg/kg, in vivo, i.n) and DEX (1 µM, in vitro; 1 mg/kg, in vivo, i.n) were used to assess cytotoxicity, oxidative stress, epithelial-mesenchymal transition (EMT), Sirtuin1 (SIRT1), inflammation-related cellular signaling, and lung function. PIP treatment protects cells from CSE-induced lung epithelial cell death. PIP treatment restores the epithelial marker (p \u3c 0.05) and decreases the mesenchymal, inflammatory markers (p \u3c 0.05) in both in vitro and in vivo models. The PIP treatment improves the altered lung function (p \u3c 0.05) in mice induced by CS exposure. Mechanistically, PIP treatment modulates SIRT1 thereby reducing the inflammatory markers such as IL-1β, IL-6 and TNF-α (p \u3c 0.05) and enhancing the epigenetic marker HDAC2 (p \u3c 0.05) and antioxidant marker Nrf2 (p \u3c 0.05) expressions. Thus, PIP alleviates pulmonary inflammation by modulating the SIRT1-mediated inflammatory cascade, inhibits EMT, and activates Nrf2 signaling

    Temporospatial shifts within commercial laboratory mouse gut microbiota impact experimental reproducibility

    Get PDF
    Experimental reproducibility in mouse models is impacted by both genetics and environment. The generation of reproducible data is critical for the biomedical enterprise and has become a major concern for the scientific community and funding agencies alike. Among the factors that impact reproducibility in experimental mouse models is the variable composition of the microbiota in mice supplied by different commercial vendors. Less attention has been paid to how the microbiota of mice supplied by a particular vendor might change over time. Results In the course of conducting a series of experiments in a mouse model of malaria, we observed a profound and lasting change in the severity of malaria in mice infected with Plasmodium yoelii; while for several years mice obtained from a specific production suite of a specific commercial vendor were able to clear the parasites effectively in a relatively short time, mice subsequently shipped from the same unit suffered much more severe disease. Gut microbiota analysis of frozen cecal samples identified a distinct and lasting shift in bacteria populations that coincided with the altered response of the later shipments of mice to infection with malaria parasites. Germ-free mice colonized with cecal microbiota from mice within the same production suite before and after this change followed by Plasmodium infection provided a direct demonstration that the change in gut microbiota profoundly impacted the severity of malaria. Moreover, spatial changes in gut microbiota composition were also shown to alter the acute bacterial burden following Salmonella infection, and tumor burden in a lung tumorigenesis model. Conclusion These changes in gut bacteria may have impacted the experimental reproducibility of diverse research groups and highlight the need for both laboratory animal providers and researchers to collaborate in determining the methods and criteria needed to stabilize the gut microbiota of animal breeding colonies and research cohorts, and to develop a microbiota solution to increase experimental rigor and reproducibility

    Dementia diagnosis in seven languages: the Addenbrooke’s Cognitive Examination-III in India

    Get PDF
    OBJECTIVE: With the rising burden of dementia globally, there is a need to harmonize dementia research across diverse populations. The Addenbrooke's Cognitive Examination-III (ACE-III) is a well-established cognitive screening tool to diagnose dementia. But there have been few efforts to standardize the use of ACE-III across cohorts speaking different languages. The present study aimed to standardize and validate ACE-III across seven Indian languages and to assess the diagnostic accuracy of the test to detect dementia and mild cognitive impairment (MCI) in the context of language heterogeneity.  METHODS: The original ACE-III was adapted to Indian languages: Hindi, Telugu, Kannada, Malayalam, Urdu, Tamil, and Indian English by a multidisciplinary expert group. The ACE-III was standardized for use across all seven languages. In total, 757 controls, 242 dementia, and 204 MCI patients were recruited across five cities in India for the validation study. Psychometric properties of adapted versions were examined and their sensitivity and specificity were established.  RESULTS: The sensitivity and specificity of ACE-III in identifying dementia ranged from 0.90 to 1, sensitivity for MCI ranged from 0.86 to 1, and specificity from 0.83 to 0.93. Education but not language was found to have an independent effect on ACE-III scores. Optimum cut-off scores were established separately for low education (≤10 years of education) and high education (>10 years of education) groups.  CONCLUSIONS: The adapted versions of ACE-III have been standardized and validated for use across seven Indian languages, with high diagnostic accuracy in identifying dementia and MCI in a linguistically diverse context

    Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals

    Get PDF
    We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI's magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57

    Overexpression and characterization of dimeric and tetrameric forms of recombinant serine hydroxymethyltransferase from Bacillus stearothermophilus

    No full text
    Serine hydroxymethyltransferase (SHMT), a pyridoxal-5'-phosphate (PLP) dependent enzyme catalyzes the interconversion of L-Ser and Gly using tetrahydrofolate as a substrate. The gene encoding for SHMT was amplified by PCR from genomic DNA of Bacillus stearothermophilus and the PCR product was cloned and overexpressed in Escherichia coli. The purified recombinant enzyme was isolated as a mixture of dimer (90%) and tetramer (10%). This is the first report demonstrating the existence of SHMT as a dimer and tetramer in the same organism. The specific activities at 37°C of the dimeric and tetrameric forms were 6×7 U/mg and 4×1 U/mg, respectively. The purified dimer was extremely thermostable with a Tm of 85°C in the presence of PLP and L-Ser. The temperature optimum of the dimer was 80°C with a specific activity of 32×4 U/mg at this temperature. The enzyme catalyzed tetrahydrofolate-independent reactions at a slower rate compared to the tetrahydrofolate-dependent retro-aldol cleavage of L-Ser. The interaction with substrates and their analogues indicated that the orientation of PLP ring of B. stearothermophilus SHMT was probably different from sheep liver cytosolic recombinant SHMT (scSHMT)

    Activin A induces dendritic cell migration through the polarized release of CXC chemokine ligands 12 and 14

    No full text
    Activin A is a dimeric protein, member of the transforming growth factor (TGF)-β family that plays a crucial role in wound repair and in fetal tolerance. Emerging evidence also proposes activin A as a key mediator in inflammation. This study reports that activin A induces the directional migration of immature myeloid dendritic cells (iDCs) through the activation of ALK4 and ActRIIA receptor chains. Conversely, activin A was not active on plasmacytoid dendritic cells (DCs) or mature myeloid DCs. iDC migration to activin A was phosphatidylinositol 3-kinase γ-dependent, Bordetella pertussis toxin- and cycloheximide-sensitive, and was inhibited by M3, a viral-encoded chemokine-binding protein. In a real-time video microscopy-based migration assay, activin A induced polarization of iDCs, but not migration. These characteristics clearly differentiated the chemotactic activities of activin A from TGF-β and classic chemokines. By the use of combined pharmacologic and low-density microarray analysis, it was possible to define that activin-A-induced migration depends on the selective and polarized release of 2 chemokines, namely CXC chemokine ligands 12 and 14. This study extends the proinflammatory role of activin A to DC recruitment and provides a cautionary message about the reliability of the in vitro chemotaxis assays in discriminating direct versus indirect chemotactic agonists
    corecore