27,170 research outputs found
Evaluation of the HARDMAN comparability methodology for manpower, personnel and training
The methodology evaluation and recommendation are part of an effort to improve Hardware versus Manpower (HARDMAN) methodology for projecting manpower, personnel, and training (MPT) to support new acquisition. Several different validity tests are employed to evaluate the methodology. The methodology conforms fairly well with both the MPT user needs and other accepted manpower modeling techniques. Audits of three completed HARDMAN applications reveal only a small number of potential problem areas compared to the total number of issues investigated. The reliability study results conform well with the problem areas uncovered through the audits. The results of the accuracy studies suggest that the manpower life-cycle cost component is only marginally sensitive to changes in other related cost variables. Even with some minor problems, the methodology seem sound and has good near term utility to the Army. Recommendations are provided to firm up the problem areas revealed through the evaluation
Yukawa Textures From Heterotic Stability Walls
A holomorphic vector bundle on a Calabi-Yau threefold, X, with h^{1,1}(X)>1
can have regions of its Kahler cone where it is slope-stable, that is, where
the four-dimensional theory is N=1 supersymmetric, bounded by "walls of
stability". On these walls the bundle becomes poly-stable, decomposing into a
direct sum, and the low energy gauge group is enhanced by at least one
anomalous U(1) gauge factor. In this paper, we show that these additional
symmetries can strongly constrain the superpotential in the stable region,
leading to non-trivial textures of Yukawa interactions and restrictions on
allowed masses for vector-like pairs of matter multiplets. The Yukawa textures
exhibit a hierarchy; large couplings arise on the stability wall and some
suppressed interactions "grow back" off the wall, where the extended U(1)
symmetries are spontaneously broken. A number of explicit examples are
presented involving both one and two stability walls, with different
decompositions of the bundle structure group. A three family standard-like
model with no vector-like pairs is given as an example of a class of SU(4)
bundles that has a naturally heavy third quark/lepton family. Finally, we
present the complete set of Yukawa textures that can arise for any holomorphic
bundle with one stability wall where the structure group breaks into two
factors.Comment: 53 pages, 4 figures and 13 table
Forced-flow once-through boilers
A compilation and review of NASA-sponsored research on boilers for use in spacecraft electrical power generation systems is presented. Emphasis is on the heat-transfer and fluid-flow problems. In addition to space applications, much of the boiler technology is applicable to terrestrial and marine uses such as vehicular power, electrical power generation, vapor generation, and heating and cooling. Related research areas are discussed such as condensation, cavitation, line and boiler dynamics, the SNAP-8 project (Mercury-Rankine cycle), and conventional terrestrial boilers (either supercritical or gravity-assisted liquid-vapor separation types). The research effort was directed at developing the technology for once-through compact boilers with high heat fluxes to generate dry vapor stably, without utilizing gravity for phase separations. A background section that discusses, tutorially, the complex aspects of the boiling process is presented. Discussions of tests on alkali metals are interspersed with those on water and other fluids on a phenomenological basis
Spectroscopic measurements of temperature and plasma impurity concentration during magnetic reconnection at the Swarthmore Spheromak Experiment
Electron temperature measurements during counterhelicity spheromak merging studies at the Swarthmore Spheromak Experiment (SSX) [M. R. Brown, Phys. Plasmas 6, 1717 (1999)] are presented. VUV monochromator measurements of impurity emission lines are compared with model spectra produced by the non-LTE excitation kinematics code PRISMSPECT [J. J. MacFarlane et al., in Proceedings of the Third Conference on Inertial Fusion Science and Applications (2004)] to yield the electron temperature in the plasma with 1 µs time resolution. Average T_e is seen to increase from 12 to 19 eV during spheromak merging. Average C III ion temperature, measured with a new ion Doppler spectrometer (IDS) [C. D. Cothran et al., Rev. Sci. Instrum. 77, 063504 (2006)], likewise rises during spheromak merging, peaking at ~22 eV, but a similar increase in T_i is seen during single spheromak discharges with no merging. The VUV emission line measurements are also used to constrain the concentrations of various impurities in the SSX plasma, which are dominated by carbon, but include some oxygen and nitrogen. A burst of soft x-ray emission is seen during reconnection with a new four-channel detector (SXR). There is evidence for spectral changes in the soft x-ray emission as reconnection progresses, although our single-temperature equilibrium spectral models are not able to provide adequate fits to all the SXR data
Astrometric jitter of the sun as a star
The daily variation of the solar photocenter over some 11 years is derived
from the Mount Wilson data reprocessed by Ulrich et al. 2010 to closely match
the surface distribution of solar irradiance. The standard deviations of
astrometric jitter are 0.52 AU and 0.39 AU in the equatorial and the
axial dimensions, respectively. The overall dispersion is strongly correlated
with the solar cycle, reaching AU at the maximum activity in 2000.
The largest short-term deviations from the running average (up to 2.6 AU)
occur when a group of large spots happen to lie on one side with respect to the
center of the disk. The amplitude spectrum of the photocenter variations never
exceeds 0.033 AU for the range of periods 0.6--1.4 yr, corresponding to
the orbital periods of planets in the habitable zone. Astrometric detection of
Earth-like planets around stars as quiet as the Sun is not affected by star
spot noise, but the prospects for more active stars may be limited to giant
planets.Comment: Accepted in Ap
Electrostatic effects on funneled landscapes and structural diversity in denatured protein ensembles
The denatured state of proteins is heterogeneous and susceptible to general hydrophobic and electrostatic forces, but to what extent does the funneled nature of protein energy landscapes play a role in the unfolded ensemble? We simulate the denatured ensemble of cytochrome c using a series of models. The models pinpoint the efficacy of incorporating energetic funnels toward the native state in contrast with models having no native structure-seeking tendency. These models also contain varying strengths of electrostatic effects and hydrophobic collapse. The simulations based on these models are compared with experimental distributions for the distances between a fluorescent donor and the heme acceptor that were extracted from time-resolved fluorescence energy transfer experiments on cytochrome c. Comparing simulations to detailed experimental data on several labeling sites allows us to quantify the dominant forces in denatured protein ensembles
Fluid-Induced Propulsion of Rigid Particles in Wormlike Micellar Solutions
In the absence of inertia, a reciprocal swimmer achieves no net motion in a
viscous Newtonian fluid. Here, we investigate the ability of a reciprocally
actuated particle to translate through a complex fluid that possesses a network
using tracking methods and birefringence imaging. A geometrically polar
particle, a rod with a bead on one end, is reciprocally rotated using magnetic
fields. The particle is immersed in a wormlike micellar (WLM) solution that is
known to be susceptible to the formation of shear bands and other localized
structures due to shear-induced remodeling of its microstructure. Results show
that the nonlinearities present in this WLM solution break time-reversal
symmetry under certain conditions, and enable propulsion of an artificial
"swimmer." We find three regimes dependent on the Deborah number (De): net
motion towards the bead-end of the particle at low De, net motion towards the
rod-end of the particle at intermediate De, and no appreciable propulsion at
high De. At low De, where the particle time-scale is longer then the fluid
relaxation time, we believe that propulsion is caused by an imbalance in the
fluid first normal stress differences between the two ends of the particle
(bead and rod). At De~1, however, we observe the emergence of a region of
network anisotropy near the rod using birefringence imaging. This anisotropy
suggests alignment of the micellar network, which is "locked in" due to the
shorter time-scale of the particle relative to the fluid
A tabulation of pipe length to diameter ratios as a function of Mach number and pressure ratios for compressible flow
Computer programs and resulting tabulations are presented of pipeline length-to-diameter ratios as a function of Mach number and pressure ratios for compressible flow. The tabulations are applicable to air, nitrogen, oxygen, and hydrogen for compressible isothermal flow with friction and compressible adiabatic flow with friction. Also included are equations for the determination of weight flow. The tabulations presented cover a wider range of Mach numbers for choked, adiabatic flow than available from commonly used engineering literature. Additional information presented, but which is not available from this literature, is unchoked, adiabatic flow over a wide range of Mach numbers, and choked and unchoked, isothermal flow for a wide range of Mach numbers
Use of record-linkage to handle non-response and improve alcohol consumption estimates in health survey data: a study protocol
<p>Introduction: Reliable estimates of health-related behaviours, such as levels of alcohol consumption in the population, are required to formulate and evaluate policies. National surveys provide such data; validity depends on generalisability, but this is threatened by declining response levels. Attempts to address bias arising from non-response are typically limited to survey weights based on sociodemographic characteristics, which do not capture differential health and related behaviours within categories. This project aims to explore and address non-response bias in health surveys with a focus on alcohol consumption.</p>
<p>Methods and analysis: The Scottish Health Surveys (SHeS) aim to provide estimates representative of the Scottish population living in private households. Survey data of consenting participants (92% of the achieved sample) have been record-linked to routine hospital admission (Scottish Morbidity Records (SMR)) and mortality (from National Records of Scotland (NRS)) data for surveys conducted in 1995, 1998, 2003, 2008, 2009 and 2010 (total adult sample size around 40 000), with maximum follow-up of 16 years. Also available are census information and SMR/NRS data for the general population. Comparisons of alcohol-related mortality and hospital admission rates in the linked SHeS-SMR/NRS with those in the general population will be made. Survey data will be augmented by quantification of differences to refine alcohol consumption estimates through the application of multiple imputation or inverse probability weighting. The resulting corrected estimates of population alcohol consumption will enable superior policy evaluation. An advanced weighting procedure will be developed for wider use.</p>
<p>Ethics and dissemination: Ethics approval for SHeS has been given by the National Health Service (NHS) Multi-Centre Research Ethics Committee and use of linked data has been approved by the Privacy Advisory Committee to the Board of NHS National Services Scotland and Registrar General. Funding has been granted by the MRC. The outputs will include four or five public health and statistical methodological international journal and conference papers.</p>
- …