13 research outputs found

    Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    Get PDF
    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71–130 Pg CO2-Ce over 100 years, indicating an important potential to mitigate climate change. However, these estimates ignored changes in soil surface reflection by the application of dark-coloured biochar. Through a laboratory experiment we show a strong tendency for soil surface albedo to decrease as a power decay function with increasing biochar application rate, depending on soil moisture content, biochar application method and land use. Surface application of biochar resulted in strong reductions in soil surface albedo even at relatively low application rates. As a first assessment of the implications for climate change mitigation of these biochar–albedo relationships, we applied a first order global energy balance model to compare negative radiative forcings (from avoided CO2 emissions) with positive radiative forcings (from reduced soil surface albedos). For a global-scale biochar application equivalent to 120 t ha−1, we obtained reductions in negative radiative forcings of 5 and 11% for croplands and 11 and 23% for grasslands, when incorporating biochar into the topsoil or applying it to the soil surface, respectively. For a lower global biochar application rate (equivalent to 10 t ha−1), these reductions amounted to 13 and 44% for croplands and 28 and 94% for grasslands. Thus, our findings revealed the importance of including changes in soil surface albedo in studies assessing the net climate change mitigation potential of biochar, and we discuss the urgent need for field studies and more detailed spatiotemporal modelling.We thank L Montanarella (Joint Research Centre) for making this study possible, W Mehl for help with the spectroscopy work and P Drahota for the mineralogy analyses. We thank the Portuguese Fundação para a Ciência e a Tecnologia (FCT) for providing F G A Verheijen with a postdoctoral grant (SFRH/BPD/74108/2010), and further want to acknowledge the financial support of the Czech Science Foundation (under grant No. GA 526/09/1762), and the Marie Curie CIG grant (No. GA 526/09/1762). We thank two anonymous reviewers for strengthening the letter.publishe

    Recommendations for the quantitative analysis of landslide risk

    Get PDF
    This paper presents recommended methodologies for the quantitative analysis of landslide hazard, vulnerability and risk at different spatial scales (site-specific, local, regional and national), as well as for the verification and validation of the results. The methodologies described focus on the evaluation of the probabilities of occurrence of different landslide types with certain characteristics. Methods used to determine the spatial distribution of landslide intensity, the characterisation of the elements at risk, the assessment of the potential degree of damage and the quantification of the vulnerability of the elements at risk, and those used to perform the quantitative risk analysis are also described. The paper is intended for use by scientists and practising engineers, geologists and other landslide experts

    50 years of different landscape management influencing retention of metals in soils

    No full text
    Abstract not availableVladislav Chrastný, Michael Komárek, Jan Procházka, Libor Pechar, Aleš Vaněk, Vít Penížek, Juraj Farka
    corecore