909 research outputs found

    Formation and study of the RRAM memory elements by local anodic oxidation method

    Full text link
    This work was supported by RFBR according to the research project № 18-37-00299 and by Grant of the President of the Russian Federation No. MK-2721.2018.8

    Modeling of titanium oxide nanostructures formation process by local anodic oxidation

    Full text link
    This work was supported by Grant of the President of the Russian Federation No. MK-2721.2018.8. and by RFBR according to the research project № 18-37-00299

    The investigation of regularities of the memristor effect of oxide nanosized titanium structures from the parameters of local anodized oxidation

    Full text link
    This work was supported by Grant of the President of the Russian Federation No. MK-2721.2018.8. and by RFBR according to the research project № 18-37-00299

    Superfluid density and competing orders in d-wave superconductors

    Full text link
    We derive expressions for the superfluid density ρs\rho_s in the low-temperature limit T0T \to 0 in d-wave superconductors, taking into account the presence of competing orders such as spin-density waves, idxyi d_{xy}-pairing, etc. Recent experimental data for the thermal conductivity and for elastic neutron scattering in La2x_{2-x}Srx_xCuO4_4 suggest there are magnetic field induced anomalies that can be interpreted in terms of competing orders. We consider the implications of these results for the superfluid density and show in the case of competing spin-density wave order that the usual Volovik-like H\sqrt{H} depletion of ρs(H)\rho_s(H) is replaced by a slower dependence on applied magnetic field. We find that it is crucial to include the competing order parameter in the self-consistent equation for the impurity scattering rate.Comment: 17 pages, RevTeX4, 6 EPS figures; final version published in PR

    On the universal AC optical background in graphene

    Full text link
    The latest experiments have confirmed the theoretically expected universal value πe2/2h\pi e^2/2h of the ac conductivity of graphene and have revealed departures of the quasiparticle dynamics from predictions for the Dirac fermions in idealized graphene. We present analytical expressions for the ac conductivity in graphene which allow one to study how it is affected by interactions, temperature, external magnetic field and the opening of a gap in the quasiparticle spectrum. We show that the ac conductivity of graphene does not necessarily give a metrologically accurate value of the von Klitzing constant h/e2h/e^2, because it is depleted by the electron-phonon interaction. In a weak magnetic field the ac conductivity oscillates around the universal value and the Drude peak evolves into a peak at the cyclotron frequency.Comment: 18 pages, 4 figures; v2: to match New J. Phys. (Focus on Graphene issue

    Deformation quantization of linear dissipative systems

    Full text link
    A simple pseudo-Hamiltonian formulation is proposed for the linear inhomogeneous systems of ODEs. In contrast to the usual Hamiltonian mechanics, our approach is based on the use of non-stationary Poisson brackets, i.e. corresponding Poisson tensor is allowed to explicitly depend on time. Starting from this pseudo-Hamiltonian formulation we develop a consistent deformation quantization procedure involving a non-stationary star-product t*_t and an ``extended'' operator of time derivative Dt=t+...D_t=\partial_t+..., differentiating the t\ast_t-product. As in the usual case, the t\ast_t-algebra of physical observables is shown to admit an essentially unique (time dependent) trace functional Trt\mathrm{Tr}_t. Using these ingredients we construct a complete and fully consistent quantum-mechanical description for any linear dynamical system with or without dissipation. The general quantization method is exemplified by the models of damped oscillator and radiating point charge.Comment: 14 pages, typos correcte

    Ward identity and optical-conductivity sum rule in the d-density wave state

    Get PDF
    We consider the role of the Ward identity in dealing with the transport properties of an interacting system forming a d-wave modulated charge-density wave or staggered flux phase. In particular, we address this issue from the point of view of the restricted optical-conductivity sum rule. Our aim is to provide a controlled approximation for the current-current correlation function which allows us also to determine analytically the corresponding sum rule. By analyzing the role of the vertex functions in both the microscopic interacting model and in the effective mean-field Hamiltonian, we propose a non-standard low-energy sum-rule for this system. We also discuss the possible applicability of these results for the description of cuprate superconductors in the pseudogap regime.Comment: Revised version, accepted for publication in Phys. Rev.

    Phase composition distribution simulation of titanium oxide nanosize structures obtained by the local anodic oxidation method

    Full text link
    This work was supported by Grant of the President of the Russian Federation No. MK-2721.2018.8. and by RFBR according to the research project № 18-37-00299
    corecore