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Ward identity and optical conductivity sum rule in the d-density wave state
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We consider the role of the Ward identity in dealing with the transport properties of an interacting system
forming a d-wave modulated charge-density wave or staggered flux phase. In particular, we address this issue
from the point of view of the restricted optical-conductivity sum rule. Our aim is to provide a controlled
approximation for the current-current correlation function which allows us also to determine analytically the
corresponding sum rule. By analyzing the role of the vertex functions in both the microscopic interacting
model and in the effective mean-field Hamiltonian, we propose a nonstandard low-energy sum-rule for this
system. We also discuss the possible applicability of these results for the description of cuprate superconduct-
ors in the pseudogap regime.
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I. INTRODUCTION

In the last years a quite important re-examination of the
optical conductivity of high-Tc superconductors �HTSC� has
been performed, due to the improved experimental resolu-
tion. Despite the variety of features observed in the different
families of cuprates, when the integral up to large frequen-
cies of the optical spectra is concerned a common behavior
can be found.1–6 This result is particularly interesting, be-
cause it would allow us to distinguish between different the-
oretical scenarios for HTSC, in particular for the pseudogap
phase observed in underdoped compounds. The optical spec-
tral weight is defined as the integral of the optical conduc-
tivity in a given direction i=x ,y ,z,

Wi��M,T� = �
−�M

�M

Re �ii��,T�d� , �1.1�

and can be analyzed as a function of both the temperature T
and the cutoff frequency �M. According to this definition, the
weight Wi includes also the condensate peak at �=0 which
develops in the superconducting �SC� state below Tc. De-
pending on the cutoff �M the sum rule �1.1� acquires differ-
ent meanings. When all the optical transitions are taken into
account, Eq. �1.1� expresses simply the so-called full f-sum
rule,7–9 relating the optical spectral weight to the total carrier
density n,

�
−�

�

Re ����d� =
�ne2

m
, �1.2�

where m is the bare electronic mass. However, it is usually
assumed that when �M is of the order of the plasma fre-
quency only intraband optical transitions relative to the low-
est conduction band �k contribute to W�T�, so that one ob-
tains the restricted or partial sum rule,10–12 which relates Wi
to the average value of the diamagnetic term �ii �see Eq.
�2.10� below�,

Wi��P,T� � W�T� =
�e2

V
��ii	 =

�e2

VN


k,�

�2�k

�ki
2 nk,�, �1.3�

where nk,� is the momentum occupation number, V is the
unit-cell volume, N is the number of unit cells, e is the elec-
tron charge, and we set 	=c=1. In the two-dimensional �2D�
case V=a2, and in the quasi-2D case V=a2s, where a is the
lattice spacing and s is the distance between the layers. In the
following we will consider mainly in-plane processes and
isotropic systems, where Wx=Wy =W.

The main difference between the restricted and full
sum rule is that while W��M →� ,T� is a constant, W�T�
given by Eq. �1.3� is in general a function of temperature,
which provides information about the interactions between
the electrons in the system. In particular, in a 2D lattice
model with a nearest-neighbors tight-binding dispersion �k
=−2t�cos kxa+cos kya� the spectral weight Eq. �1.3� is pro-
portional to the mean kinetic energy of the system, W�T�
=−��e2 /V���K	 /2�. In the absence of interactions nk�

= f�
k�, where 
k=�k−�, � is the chemical potential, and
f�x� is the Fermi function. In this case the main temperature
dependence of the spectral weight �1.3� comes from the tem-
perature smearing of the Fermi function, and can be easily
evaluated using the Sommerfeld expansion:

W�T�
��e2a2/V�

= −
1

N


k

�kf�
k�

= −� d�N���f�� − ��

=
W�0�

��e2a2/V�
−

�2

6
c���T2, �1.4�

where N��� is the density of states for the tight-binding dis-
persion and c���=�N����+N���. By making a quadratic ap-
proximation for the two-dimensional tight-binding band dis-
persion one would find c���=1/4�t, which is also a good

Published in "Physical Review B 71: 104511, 2005"
which should be cited to refer to this work. 

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by RERO DOC Digital Library

https://core.ac.uk/display/20638605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ht
tp
://
do
c.
re
ro
.c
h

estimate of the exact value obtained using the true band dis-
persion and by doping the system away from half-filling �see
also Appendix A�. However, for an interacting system nk�

can acquire in general a different temperature dependence,
which influences also W�T�. An example is provided by the
case of a SC instability. Indeed, according to the BCS theory,
in the SC state the occupation number becomes

nk� = �1 − 
k/Ek
SC tanh�Ek

SC/2T�� , �1.5�

where �k is the SC gap and Ek
SC=�
k

2 +�k
2 is the quasiparticle

dispersion in the SC state, so that the spectral weight �1.3�
decreases below Tc. When W�T� corresponds to the kinetic
energy this result is understood as the increase of �K	 below
Tc due to the particle-hole mixing in the SC state.

These general expectations about the behavior of the re-
stricted optical sum rule were not confirmed, within several
respects, in the experiments on HTSC. Early measurements
of the c-axis spectral weight up to frequencies of the order of
the plasma edge, �P104 cm−1, showed that in YB2Cu3O6+�

�YBCO� compounds Wz�T� exhibits a quite anomalous tem-
perature dependence, with a decrease below the pseudogap
temperature, followed by an increase below Tc.

13 Such a be-
havior was indeed attributed to the effect of pseudogap open-
ing, combined with the tunneling character of the transport
along the c-axis direction.

Recently more attention has been instead devoted to the
issue of the spectral-weight behavior for the in-plane optical
conductivity, which is a better probe of the degrees of free-
dom mostly responsible for the properties of HTSC. The
measurements were performed in Bi2Sr2CaCu2O8+�

�BSCCO�,1,2,4 YBCO,3,5 and La2−xSrxCu2O4 �LSCO� �Ref. 6�
compounds at various cutoff frequencies �M between
1000 cm−1 �0.12 eV� and 20 000 cm−1 �2.5 eV�. A first issue
is the behavior of W�T� below Tc. While early measurements
in BSCCO samples show that there is an even faster increase
of W�T� below Tc,

1,2 contrary to the prediction of the BCS
theory, more recent results in BSCCO �Ref. 4� show that
there is a flattening of W�T� in underdoped samples for �M

=8000 cm−1, while a BCS behavior below Tc is seen in the
overdoped BSCCO and in YBCO samples.3,5 Also from the
theoretical point of view many proposals arose relative to the
problem of the lowering of in-plane kinetic energy in the SC
state.14–17

Interestingly the behavior of W�T� above the SC transition
also shows unexpected features, which deserve more inves-
tigation. Indeed, as observed in Ref. 2, the in-plane optical
sum rule does not show any decrease below the temperature
at which the pseudogap forms, contrary to what found for the
c-axis response. In addition, when the plasma edge is con-
sidered as a cutoff, W�T� shows a “standard” T2 temperature
dependence, even though these are clearly strongly interact-
ing non-Fermi-liquid systems. However, this result is mis-
leading, because despite the qualitative analogy with the free
tight-binding result �1.4�, the measured W�T� is in a strong
quantitative disagreement with the estimate �1.4�. Indeed, as
we show in Appendix A, the coefficient c��� of Eq. �1.4� is
about one order of magnitude larger than expected by using a
t value estimated by other probes �as photoemission mea-

surements of the Fermi surface�, showing that the sum rule is
far from being conventional already in the normal �non-SC�
state.6 Moreover, even faster increase of W��M ,T� is ob-
served at smaller values of �M.4,6

For these reasons, the issue that we address in the present
paper is the behavior of the optical-conductivity spectra and
sum rule above Tc, but within a model system for the
pseudogap state. Between the several proposals existing in
the literature about the origin of the pseudogap,18 we focus in
the present paper on the case where a competing order pa-
rameter is formed before the SC state is established. In par-
ticular, we refer to the so-called flux phase or d-density wave
state �DDW�.19–27 We would like to stress that while a flux
phase does not present modulated charge, the same phenom-
enological spectrum can be considered as emerging due to
the tendency of the system to form charge order near a quan-
tum critical point.28 This scenario was studied in Ref. 26, and
we will refer in the present paper also to this point of view,
which could be useful in relating the results presented here
not only to cuprates, where they can be only partly applied,
but also to other materials displaying a true k-space modu-
lated CDW �as, for example, dichalcogenide materials29,30�.

In a previous publication,31 we discussed briefly how a
mean-field description of the DDW state can be compatible
with an increase of the spectral weight below the temperature
at which the order parameter forms. However, this result was
not considered from a more general point of view, which
consists in relating the sum rule to the problem of providing
a gauge-invariant approximation for the response functions
in a given microscopic model. As we shall see, the basic
requirement of respecting the charge conservation imposes
simultaneously several constraints on the definition of the
current operator, the diamagnetic term and the corresponding
electromagnetic correlation functions. The sum rule then fol-
lows naturally when all these requirements are satisfied
within a given approximation for the microscopic interacting
model, and different approximations can lead to different
sum rules. As we shall see, while the anomalous sum rule
derived in Ref. 31 can be proposed to reproduce the experi-
mental data for cuprates, the agreement with the theoretically
obtained optical conductivity is more subtle, and more de-
tailed features specific of different materials should be con-
sidered. A more difficult task is to properly define the change
of behavior of the sum rule at different cutoff �M; this prob-
lem is quite general, and while it is clear that for �M →� the
full sum rule �1.2� must be recovered, there is as yet no clear
understanding of a proper experimental and theoretical defi-
nition of the correct cutoff for the restricted sum rule in Eq.
�1.3�. In our case, we shall discuss how the various restricted
sum rules should be realized at different energy scales, even
though an exact result cannot be obtained in this respect.

The structure of the paper is the following. We begin by
presenting in Sec. II the general formalism which is needed
to analyze the optical-conductivity sum rule in an interacting
system. In Sec. III we explicitly study the case of a DDW
state, and we show that we can derive a good approximation
for the low-energy optical conductivity which is however no
more related to a known sum rule. In Sec. IV we solve this
problem by analyzing directly the reduced, low-energy DDW
model Hamiltonian, and we calculate explicitly the sum rule
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and the optical conductivity within the proposed mean-field
approach to the DDW transition. We then discuss in Sec. V
the results obtained and summarize the procedure described
in the paper. In Appendix A we report the evaluation of the
sum-rule behavior for the noninteracting tight-binding
model, to quantify the discrepancy with the experimental
data, and some details about the role of disorder are pre-
sented in Appendix B.

II. SUM RULE IN A MODEL WITH GAUGE
INVARIANT INTERACTION

Let us start by considering a general Hamiltonian describ-
ing interacting electrons in a two-dimensional lattice,

H = − t

�ij	

ci�
† cj� − �


i

ci�
† ci� + 


ij,���

ci�
† ci�V�ri − r j�cj��

† cj��,

�2.1�

where the field operator ci�
† creates an electron of spin �

at ri, t is the hopping parameter, �ij	 is the sum over
nearest-neighbor sites, V�ri−r j� is the translationally invari-
ant electron-electron interaction. When rewritten in recipro-
cal space, the band dispersion corresponds to ��k�
=−2t�cos kxa+cos kya�. Throughout the paper units 	=kB

=c=1 are chosen.
In the DDW state a particle-hole coupling is considered at

the characteristic wave vector Q= �� /a ,� /a�. The notation
is then simplified by halving the Brillouin zone and introduc-
ing two-component electron operators �the DDW equivalent
of Nambu spinors32�

�k� = � ck�

ck+Q,�
, �k�

† = �ck�
† ck+Q,�

† � , �2.2�

where ck�
† and ck� are the Fourier transforms of ci�

† and ci�.
The Hamiltonian �2.1� written in terms of � becomes

H = 

k,�

RBZ

�k�
† �1

2
��k + �k+Q� − � +

1

2
��k − �k+Q��3��k�

+
1

N


q

BZ

V�q� 

k,�

RBZ

�k+q,�
† �k� 


p,��

RBZ

�p−q,��
†

�p��, �2.3�

where V�q� is the Fourier transform of the potential, �3 is the
Pauli matrix and the sums are over the reduced �RBZ� and
full Brillouin zone �BZ�.

After employing the nesting property �k+Q=−�k the ki-
netic term of the Hamiltonian �2.3� takes a simple form

H0 = 

k,�

RBZ

�k�
† ��k�3 − ���k�. �2.4�

Accordingly, the free electron Green’s function reads

G0
−1�k,i�n� = �i�n + ���0 − �k�3, �2.5�

where �n= �2n+1��T is the fermionic �odd� Matsubara fre-
quency. The full Green’s function of the system G�p�, p
= �p , i�� is given by the Dyson equation

G−1�p� = G0
−1�p� − ��p� , �2.6�

where the self-energy ��p� is evaluated at Hartree-Fock level
as

��p� = 

k

G�k�V�p − k� , �2.7�

where 
k is a short-hand notation for T /N
i�n

k

RBZ. Observe
that for a time-independent interaction, as the one considered
in Eq. �2.1�, the self-energy �2.7� does not depend explicitly
on the frequency, but we will keep for convenience this more
general notation in the following. In the case of supercon-
ductivity, the Hartree-Fock approximation for the self-
energy, equivalent to the Eq. �2.7� rewritten in the particle-
particle channel, gives the usual BCS result for the Green’s
function.33 In the case of DDW order it corresponds instead
to the mean-field Green’s function usually considered in the
literature.31,34–41

A. The electrical conductivity and the conductivity sum rule

The optical conductivity can be calculated from the elec-
tromagnetic response kernel

K���q,i�m� = − �������1 − ��0� + ����q,i�m� , �2.8�

where ����q , i�m� is the correlation function

����q,i�m� =
1

N
�

0

�

d�ei�m��T�j��q,��j��− q,0�	 .

�2.9�

Here �ii is the diamagnetic �or stress� tensor, � is imaginary
time, �=1/T, and �m=2�mT is the bosonic Matsubara fre-
quency. The index �= �i ,0� with i=1,2 indicates spatial and
time components, respectively, so that the particle current
operator j��q ,��= �ji�q ,�� , j0�q ,��� consists of the particle
current density, ji�q ,�� and the particle density, j0�q ,��. As
usual, the particle current and the diamagnetic tensor are
defined as the first and second order derivatives of the
Hamiltonian H�A� in the presence of the vector potential A
with respect to A itself,12

H�Ai� � H�0� − 

j
�eAi�rj�ji�rj� −

e2

2
Ai

2�rj��ii�rj�� ,

�2.10�

so that the total current density is expressed as Ji�r�
=−�H /�Ai�r�=eji�r�−e2�ii�r�Ai�r�, and by evaluating
�Ji�q�	 within the linear response theory,12,33,42 one obtains
J��q�=e2K���q�A��q� with the electromagnetic kernel �2.8�.
Then using that A���=E��� / i��+ i0�, where E is the elec-
tric field, one finally arrives at the Kubo formula

���� = − ie2Kii�q = 0,��
V�� + i0�

= ie2 ��ii	 − �ii�q = 0,��
V�� + i0�

,

�2.11�

where the standard analytic continuation i�m→�+ i0 was
made. To avoid confusion, along the paper we will indicate
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the imaginary bosonic frequencies with i�m, the imaginary
fermionic frequencies with i�n and the real frequencies with
�. Since an isotropic system is considered we can omit the
index i as done in the left-hand side �LHS� of Eq. �2.11� and
in what follows.

Taking the real part of �2.11�, one obtains Re ����
= ��e2 /V��������	−Re ��0 ,���+ �e2 /V�Im ��0 ,�� /�. In
the presence of disorder the coefficient of the ���� vanishes,
so that Re ��q=0,�→0�= ��	 and only the regular part of
���� survives. As a consequence, one usually defines the
optical conductivity only through the imaginary part of
��q=0,��:

Re ���� =
e2

V

Im ��q = 0,��
�

, �2.12�

so that using the Kramers-Kronig �KK� relations for ��q
=0,�� one can derive the well-known sum rule,

W�T� = �
−�

�

Re ����d�

=
e2

V
�

−�

� Im ��q = 0,��
�

d�

=
�e2

V
Re ��q = 0,� = 0� =

�e2

V
��	 . �2.13�

The form of H�A� itself depends on the microscopic
model and thus on the way the vector potential A enters the
Hamiltonian of the system. When a continuum model is con-
sidered instead of Eq. �2.1�, the kinetic term is expressed as
��−�2� /2m and A is inserted using the minimal coupling
prescription −i� →−i�−eA. For lattice systems the equiva-
lent of the minimal coupling prescription is the so-called
Peierls ansatz,7,8,12 which corresponds to insert the gauge
field A in Eq. �2.1� by means of the substitution ci
→cie

−ie�A·dr. In this case, it is clear that when the interaction
term of the Hamiltonian is a density-density interaction, as in
Eq. �2.1�, only the kinetic hopping term is modified, while
the interaction term is gauge invariant �GI�. As a result, the
current/density operator and the diamagnetic tensor can be
expressed �for small q� as

j��q,t� =
1

N


k,�

v��k�ck−q/2�
† ck+q/2�

=
1

N


k,�

RBZ

�k−q/2
+ ���k − q/2,k + q/2��k+q/2, q → 0,

�2.14�

�ii =
1

N


k,�

�2�k

�ki
2 nk,�, �2.15�

where

v��k� = �vk
F,1�, ���k − q/2,k + q/2� = �vk

F�3,�0�, q → 0,

�2.16�

and �vk
F�i=��k /�ki is the Fermi velocity.43 Note that if a qua-

dratic band dispersion �k=k2 /2m is assumed, the tensor �ii
reduces to n /m, where n is the total carrier density, so that
Eq. �2.13� reduces to the f-sum rule �1.2�, which is tempera-
ture independent. Instead, for a tight-binding nearest-
neighbors lattice dispersion, according to the definition
�2.15�, �ii is proportional to the kinetic energy, and the sum
rule �1.4� is recovered. Observe that formally the sum rule
�2.13� always requires the integration up to an infinite cut off
energy. Nevertheless, an intrinsic finite cutoff energy is pro-
vided by the energy scale below which a given model can be
considered as a good approximation for the real system. As a
consequence, while the full f-sum rule is always satisfied at
enough large energy scales, the restricted optical sum rule
relative to a given tight-binding interacting model is ex-
pected to hold only below some intrinsic energy scale, whose
definition is not universal. We would like to stress that the
definitions �2.14� and �2.15� follow from the Hamiltonian
�2.1� once that a gauge-invariant form is chosen for the in-
teraction term. However, this assumption is invalid when, for
example, “occupation modulated” hopping terms are
present,14 or when an “effective” interacting model is con-
sidered, in a sense that we will specify below �see Sec. IV�.

B. Gauge invariance and the sum rule

The derivation of the sum rule presented above is rather
formal, and does not allow one to understand that the sum
rule is just a different way of stating the gauge invariance of
the theory. To gain a deeper insight into the relation between
these two aspects, it is useful to consider here the sum-rule
derivation presented in Ref. 42. The starting point is the ob-
servation that in a GI theory there is a gauge freedom to
choose whether the applied electric field E=−�tA− �� is
included in the Hamiltonian �2.1� either via the vector poten-
tial A��=0� or by considering a scalar potential ��A=0�.
Obviously, the conductivity derived from two equivalent
Hamiltonians H�A� and H��� must be the same, but this is
only guaranteed by the charge conservation

e�t j0�q,t� + ieq · j�q,t� = 0. �2.17�

The proof considered in Ref. 42 that ���� derived from
H�A� and H��� are the same is based on the identity

�
−�

�

d� Re ���� =
�e2

VN
lim
qi→0

1

qi
��j0�q,t�, ji�− q,t��	 ,

�2.18�

which is obtained by using the charge conservation
�2.17�. For example, substituting in Eq. �2.18� j0�q , t�
=
k,�ck−q/2,�

† ck+q/2,� and the free-electron expression j�q , t�
= �1/m�
k,�kck−q/2,�

† ck+q/2,�, corresponding to �k=k2 /2m,
returns the full f-sum rule �1.2�.

Another way to state the relation between the sum rule
and the GI uses instead the generalized electromagnetic ker-
nel �2.8�. As discussed in Ref. 33 with reference to the SC
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case, the requirements of charge conservation �q�J��q�=0�
and invariance of the theory under the gauge transformation
A��q�→A��q�+ iq���q� are fulfilled when the condition

q�K���q� = K���q�q� = 0, q = �q,�� �2.19�

is satisfied. In particular, the following relation must hold:

�ii�q → 0,� = 0� = ��ii	 . �2.20�

This equality states that the diamagnetic term is canceled out
by the static limit ��=0,q→0� of the �real� part of the
current-current bubble, while deriving the Eq. �2.13� we used
the relation between the dynamic �q=0,�→0� limit of the
bubble and the stress tensor. However, in deriving Eq. �2.13�
we assumed the presence of disorder, whose role is crucial in
restoring the equality between the static and dynamic limits
of the current-current correlator ��q�. Indeed, while in a
clean system the dynamic limit of the bubble vanishes, in the
presence of disorder it coincides with the static limit, which
in turn is equal to the diamagnetic term: Re ���→0,q=0�
=Re ���=0,q→0�= ���, and then Eq. �2.13� follows.

C. Ward identity and vertex function

The advantage of the derivations �2.18� and �2.20� of the
sum rule is that they show explicitly that it must be regarded
as a consequence of the charge conservation. Moreover, it
allows one to see that once a given approximation is used in
evaluating the current-current correlation function, it also
fixes the sum rule that will follow from such an approxima-
tion. However, a quite difficult task is to implement an ap-
proximation for both the Green’s function and the current-
current correlator which preserves the condition �2.19�,
necessary for maintaining the GI of the theory. In particular,
when the Hartree-Fock self-energy �2.7� is used and the
bubbles ��� are evaluated in the lowest-order approxima-
tion,

���
����q,i�m� = − 2


k

Tr�G�k − q/2,i�n + i�m�

����k − q/2,k + q/2�G�k + q/2,i�n�

����k + q/2,k − q/2�� , �2.21�

the GI is not in general preserved, as it is known for SC and
as we shall see explicitly in Sec. IV in the case of DDW �the
factor 2 in the previous equation is due to the spin summa-
tion�. A general field theoretical approach that solves the dif-
ficulties with charge conservation and gauge invariance,
originally present in the mean-field �bare vertex� formulation
of the BCS theory, was developed by Nambu32 and discussed
in detail in Chap. 8 of Ref. 33, so that here we only introduce
the main definitions and stress the points necessary for the
consideration of the DDW state.

As shown in Ref. 33, the current-current correlator, de-
fined above in Eq. �2.9�, can be expressed in terms of the full
Green’s functions �2.6�, the bare vertex �� and the full vertex
function �� as follows:

����q,i�m� = − 2

k

Tr�G�k−����k−,k+�G�k+����k+,k−�� ,

�2.22�

where k+= �k+ , i�n+ i�m , �, k−= �k− , i�n , � with k±=k±q /2.
The important property of the current-current correlation
function �2.22� is that the condition �2.19� is preserved
whenever the vertex function satisfies the generalized Ward
identity �GWI�:

q����p+,p−� = G−1�p−� − G−1�p+� . �2.23�

The GWI is nothing but the charge conservation law �2.17�
rewritten using the Green’s and vertex functions. If the
Green’s function given by Dyson equation �2.6� is evaluated
within the Hartree-Fock approximation �2.7�, then the vertex
function satisfying the GWI is also the solution of the fol-
lowing integral equation:

���p+,p−� = ���p+,p−� + 

k

G�k+����k+,k−�G�k−�V�p − k� .

�2.24�

The analytical solution of Eq. �2.24� cannot be easily deter-
mined, except that in the static limit, when �i is given by

�i�p,p� = �i�p,p� +
���p�

�pi

= −
�G−1�p�

�pi

= G−1�p�
�G�p�

�pi
G−1�p� . �2.25�

Indeed, if one sets q=0 in Eq. �2.24� �which corresponds, as
usual, to the static limit �=0, q→0 when analytical continu-
ation i�m→�+ i0 is made�, by means of the previous rela-
tion one obtains

�i�p,p� = �i�p,p� + 

k

G�k��i�k,k�G�k�V�p − k�

= �i�p,p� + 

k

�G�k�
�ki

V�p − k�

= �i�p,p� − 

k

G�k�
�V�p − k�

�ki

= �i�p,p� +
�

�pi



k

G�k�V�p − k�

= �i�p,p� +
���p�

�pi
. �2.26�

Here we used the fact that the potential V is nonseparable,
viz. it depends on the difference p−k, as it is expected for a
GI density-density interaction. Observe also that this result
can be obtained directly from the GWI �2.23� by taking the
limit �=0, q→0. For example, one can easily check that WI
�2.25� is satisfied for the free electron Green’s function �2.5�
taken together with the bare vertex �2.16�. It is worth noting
that in the case of SC the behavior of the vertex function at
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zero frequency and momentum is completely different, and
indeed �i�p , p� is divergent as the inverse of the phase-mode
dispersion.32,33 Indeed, the equivalent of Eq. �2.23� contains
for the SC case a combination of Green’s functions and Pauli
matrices that cannot be reduced to the derivative of G−1 as in
Eq. �2.25�. Here, however, the equivalent of the gapless
phase mode is not present, because there is no Goldstone
mode when a discrete symmetry is broken, and �i�p , p� turns
out to be finite.

D. Symmetrized expression for T=0 dc conductivity

In practice, since the exact expressions for G and �i are
unknown, the consistency of an approximated calculation of
the conductivity can be guaranteed if the approximated ex-
pressions for G and �i satisfy the GWI �2.23�. Observe that
what we obtained in �2.26� is the limit �=0, q→0 of �, but
in the calculation of the optical conductivity it is the opposite
limit which is needed. However, at least in the presence of
impurities, or at T=0, the static and dynamic limits com-
mute. Unfortunately, a generalization of the result �2.26� to
finite frequency cannot be obtained from the equation �2.24�
for a generic potential, by means of, e.g., a perturbative
method. Since our final task is to find an approximation for
the optical conductivity which allows us also to estimate the
corresponding sum rule, let us analyze the utility of the result
�2.26�. First, we note that the knowledge of the vertex func-
tion at zero frequency allows one to find an exact result for
the dc conductivity at T=0. To show this it is convenient to
think of 2�2 matrices A and B as being represented by two
column vectors of 2�2 matrix elements and rewrite Tr of
the matrix product as the scalar product,

Tr�AB� � 

��

�A� ����B� ��� = A� · B� . �2.27�

Accordingly, by introducing the vector

�G�k+,k−��� �k+,k−���� � 

��

G���k+�G���k−�����k+,k−� ,

�2.28�

we can rewrite correlation function �2.22� as follows:

�ij�q� = − 2� d3k

�2��3G�k+,k−��� i�k+,k−� · �� j�k−,k+� ,

�2.29�

where since we are considering the T=0 case we have an
integration over the real frequency instead of the Matsubara
sum and the argument of the polarization operator is q
= �q ,��.

The dc conductivity is determined by the imaginary part
of the derivative of the correlation function, which in turn is
given by

� ��ij�q = 0,��
��

�
�=0

= − 2� � d3k

�2��3 �G�� �k+,k−��� i�k+,k−� · �� j�k−,k+�

+ G�k+,k−��� �i� �k+,k−� · �� j�k−,k+���
�=0,q=0

, �2.30�

where G�� , ��� indicate the derivative with respect to �. The
expression �2.30� can be further simplified by using the
equation for vertex �2.24� taken at T=0 and its derivative
with respect to �,

�� i�k,k� = �� i�k+,k−� −� d3p

�2��3G�p+,p−��� i�p+,p−�V�k − p� ,

q = 0, �2.31a�

�� �i� �k+,k−� =� d3p

�2��3 �G�� �p+,p−��� i�p+,p−�

+ G�p+,p−��� �i� �p+,p−��V�k − p� .

�2.31b�

Substituting �� i from Eq. �2.31a� in Eq. �2.29� and using
�2.31b� we obtain

� ��ij�q = 0,��
��

�
�=0

= − 2� � d3k

�2��3G�� �k+,k−;q = 0��� i�k,k� · �� j�k,k��
�=0

.

�2.32�

Our derivation is similar to the derivation of the symmetrized
expressions for the derivatives of the polarization operator
considered in Ref. 44, where also the derivative of Bethe-
Salpeter kernel enters the analog of Eq. �2.31b�. The useful
property of the representation �2.32� for ��� is that it contains
two full vertex functions �i. The corresponding expression
for the dc conductivity �dc coincides with the result derived
by Langer �Eq. �4.8� of Ref. 45� in the early 1960s using a
completely different approach, consisting in introducing a
symmetric bubble

�ij
sym�i�m� = − 2

T

N



k,i�n

RBZ

Tr�G�k,i�n + i�m�

�i�k,k�G�k,i�n�� j�k,k�� , �2.33�

obtained by using two corrected vertices, evaluated at zero
external frequency, and whose derivative at zero frequency
and temperature coincides with the result �2.32�. Then in the
limit T→0 the leading term of Langer’s expression for the
dc conductivity is obtained from �2.33� via
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�dc = lim
�→0

Re ���� =
e2

V
Im �����ii

sym�i�m → �����=0.

�2.34�

In Eq. �2.26� the vertex function with coinciding fermion
momenta and energies, k+=k−=k is related to the self-energy
��k� by the WI �2.25�.39,45 Thus one can immediately see
that whenever ��k� depends on the momentum k, the dc
conductivity �2.34� would be different from the value ob-
tained using the bare bubble �2.21�.

From the previous considerations one can argue that, in
the absence of a solution for the vertex function � at finite
frequency, a better approximation for the conductivity in the
DDW state is provided by the bubble �2.33�, which gives at
least an exact result for the dc conductivity at T=0 �see also
Ref. 39�. In other words, by evaluating the symmetric
bubbles �2.33� at finite frequency one can still capture the
behavior of ���� at small �. At the same time, we do also
expect that this assumption will lead to a new result for the
sum rule �2.13�, because the symmetric bubble �2.33� is no
more connected to the diamagnetic term �2.15� by any rela-
tion. However, as we shall see in the next section, the sum
rule for the bubbles �2.33� can be obtained analytically by
using the analogies between the results discussed up to now
and the properties of the reduced Gaussian model, where the
vertex equation admits the solution Eq. �2.26� at all frequen-
cies.

III. VIOLATION OF THE GI WITH THE BARE VERTEX
IN THE DDW STATE

A. The mean-field DDW Hamiltonian

The previous discussion was generically referred to any
system displaying a particle-hole instability at the wave vec-
tor Q. However, in the Hartree-Fock approach one usually
selects a particular form for the mean-field Green function G
and then solves the self-consistency equation corresponding
to implement the Dyson equation �2.7�. In the DDW case,
one approximates the general interacting Hamiltonian �2.1�
with the model,

HI = −
V0

2N


k,k�
�,��

wd�k�wd�k��ck�
† ck+Q�ck�+Q��

† ck���,

�3.1�

where wd�k�= �cos kxa−cos kya� /2. By defining iD0

=−�V0 /N�
k�wd�k��ck+Q�
† ck�	 we obtain the following

mean-field DDW Hamiltonian,

H = 

k,�

���k − ��ck�
† ck� + iDkck�

† ck+Q��

= 

k,�

RBZ

�k�
† ��k�3 − Dk�2 − ���k�, �3.2�

where Dk=D0wd�k� is the gap, known as the DDW gap,27

arising from the formation of the state with circulating cur-
rents below a characteristic temperature TDDW.46 This Hamil-

tonian corresponds to an explicit solution of Eqs. �2.6� and
�2.7� with

��k� = − Dk�2, �3.3�

so that the full Green’s function �2.6� reads

G−1�k,i�n� = �i�n + ���0 − �k�3 + Dk�2. �3.4�

The corresponding self-consistency equations for the order
parameter D0 and for the chemical potential � read

2V0

N


k

RBZ
wd

2�k�
Ek

�f�
−,k� − f�
+,k�� = 1, �3.5�

2

N


k

RBZ

�f�
−,k� + f�
+,k�� = n , �3.6�

where Ek=��k
2 +Dk

2, and 
±,k=−�±Ek are the two excitation
branches associated with the formation of DDW order, which
breaks translation symmetry. Observe that to obtain the Eq.
�3.6� we used the fact that the occupation number nk� in the
DDW is given, according to the Green’s function �3.4�, by
nk�= �1/2Ek��Ek�f�
+�+ f�
−��+�k�f�
+�− f�
−���. This al-
lows us also to evaluate the diamagnetic term �2.15� and the
corresponding sum rule as

W�D,T�
��e2a2/V�

= ��	 = −
1

N


k

RBZ
�2

E
�f�
+� − f�
−�� , �3.7�

where we used the fact that ��2�k /�ki
2�= +2ta2 cos�kia� and

we omitted the explicit dependence of �, E, 
± on k. At this
level we have performed an approximation on both the self-
energy and the Green’s function of the original, interacting
system. To obtain now a GI approximation for the optical
conductivity, i.e. an approximation which gives Eq. �3.7� as
the integral of ����, we should also evaluate the vertex func-
tion �2.24�. Indeed, as we show with an explicit calculation
in the next section, the bubble �2.21� with a bare vertex �
violates this requirement. In general, if the optical conduc-
tivity cannot be calculated by means of the exact vertex
function �2.24�, but a different approximation is used, one
cannot expect any more to find Eq. �3.7� as the correspond-
ing sum rule, but this must be calculated explicitly, as we do
in Sec. IV.

Before showing the details of this calculation we would
like to comment on the relation between the microscopic
interaction �2.1� and the approximated one given in Eq. �3.1�.
If one restrict in the interacting part of Eq. �2.1� the sum over
nearest-neighbors sites one can easily show that Hint can be
rewritten as

Hint = − V0 

�,k,k�,q

���

w��k�w��k��ck�
† ck+q��ck�+q��

† ck��,

�3.8�

where the factor �1/4�
�ei�k−k�� coming from the sum over
nearest-neighboring sites � has been decomposed in the two-
dimensional basis of wave functions w��k�, which includes
the sum of contributions from several channels displaying
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different symmetries with respect to the discrete rotation
group for the square lattice. One can see that even selecting
only the d-wave channel and the contribution at q=Q, Eq.
�3.8� does not contain only the coupling in the particle-hole
channel of Eq. �3.1�, because the spin structure in Eq. �3.8�
and Eq. �3.1� are different. This problem does not exist if the
original microscopic model is given by a current-current in-
teraction, as the formation of a DDW state would naturally
require,

Hint =
V0

2 

�i,j	
���

ci�
† ci��cj��

† cj� = −
V0

2 

�i,j	
���

ci�
† cj�cj��

† ci��.

�3.9�

Observe that �i� Eq. �3.9� is still gauge invariant, since the
Peierls transformation does not depend on the spin index; �ii�
the self-energy for the interaction �3.9� is still given by Eq.
�2.7�, with V�q�=2V0. In the following we will never face
the problem of solving explicitly Eq. �3.5� for a given micro-
scopic interaction. However, it is worth noting that Eq. �3.1�
can be directly derived by selecting a specific channel of a
microscopic GI model. Other examples can be also found in
Refs. 20–25.

B. The current-current correlation function evaluated with the
bare vertex �

To evaluate the bubbles �2.21� it is useful to introduce the
spectral representation for the Green’s function �3.4�,

G�k,i�n� = �
−�

�

dz
A�k,z�
i�n − z

�3.10�

with the spectral function

A�k,z� =
Ek + �k�3 − Dk�2

2Ek
��z − � − Ek�

+
Ek − �k�3 + Dk�2

2Ek
��z − � + Ek� . �3.11�

The correlation functions �2.21� can then be written as

���
����q,i�m� = −

2

N


k

RBZ � dz1dz2 Tr�A�k+,z1����k+,k−�

�A�k−,z2����k−,k+��
f�z1� − f�z2�
z1 − z2 − i�m

�3.12�

which gives, according to �3.11�, the following current-
current correlation function:

�ii
����q,i�m� = −

1

N


k

RBZ

�vki

F �2� f�− � + E+� − f�− � + E−�
E+ − E− − i�m

+
f�− � − E+� − f�− � − E−�

E+ − E− + i�m
�1 +

�+�− − D+D−

E+E−


+ �vki

F �2� f�− � + E+� − f�− � − E−�
E+ + E− − i�m

−
f�− � − E+� − f�− � + E−�

E+ + E− + i�m
�1 −

�+�− − D+D−

E+E−
 , �3.13�

where D±=Dk±q/2, �±=�k±q/2, E±=Ek±q/2.
The issue then arises of the relation between the approxi-

mation �3.12� for the correlation function and the sum rule
�3.7�. Let us consider again the GI relation �2.20�. When the
static limit of the current-current bubble is considered �cor-
responding in Matsubara formalism to set q=0 in the expres-
sion �3.13��, we find that �����0,0� is real and given by

�ii
����0,0� = −

2

N


k

RBZ
�vi

F�2D2

E3 �f�
+� − f�
−��

+
�vi

F�2�2

E2 �f��
+� + f��
−�� . �3.14�

The usual procedure used to demonstrate that ��0 ,0� cancels
out ��	 given by Eq. �3.7� consists in integrating by parts the
term in ��0 ,0� which contains the derivative of the Fermi
distribution f��
±�.12 In order to do that one would need a
term like df�
±� /dki= ± f��
±���vki

F −Dvki

D� /E, which in addi-
tion to the Fermi velocity, vk

F, contains also the DDW gap
velocity, vki

D =−�Dk /�ki. However, as one can easily see, the

second term of Eq. �3.14� does not contain any contribution
proportional to vi

D, so that the gauge-invariant relation ��q
→0,�=0�= ��	 cannot be satisfied with the bubble ����.

According to the discussion of the preceding section, the
GI can only be restored when the vertex corrections are in-
cluded in the correlation functions. Observe that the static-
limit result �2.26� reads in the case of DDW state:

�i�k,k� = �i�k,k� + vki

D�2 = vki

F �3 + vki

D�2 � Vi�k� ,

�3.15�

where Vi�k� is the generalized velocity representing the q
=0 limit of the vertex function. It is important to stress that
in deriving Eq. �2.26� for �i�k ,k� it was crucial to keep the
translation invariant form V�p−k� of the potential until the
end. This point has been often overlooked in the literature, at
least while discussing the corresponding problem for the su-
perconducting case.33 If one used in Eq. �2.24� defining the
vertex function the approximated form V�k−p�
�V0wd�k�wd�p�, which is appropriate for selecting only the
d-wave channel in the self-energy �2.7�, the result �3.15�
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could not be obtained. Indeed, a single-channel separable
potential makes the interaction term of the Hamiltonian not
gauge invariant, and then it would contribute to both the
current operator and diamagnetic term, as we will discuss in
the next section within the context of the reduced model.
However, once that the result �2.26� has been established,
and all the intermediate steps have been performed in re-
specting GI requirements, we can definitely select from the
self-energy �2.7� only the d-wave channel. As a consequence,
if ��p� is approximated as in Eq. �3.3�, the result �3.15�
follows.

The Eq. �3.15� can also be obtained from the generalized
WI �2.23�. Indeed, at small q the difference G−1�p�−G−1�p
+q�, where G is defined in Eq. �3.4�, is given by

q��� = G−1�k� − G−1�k + q� = − i�m�0 + vk
F · q�3 + vk

D�2.

�3.16�

Since, according to the definitions �2.16�, the bare vertex
satisfies q���=−i�m�0+vk

F ·q�3, for �m=0 we can find
again that the static vertex �3.15� satisfies the WI �2.23�.
Note that from the WI �3.16� one can be tempted to gener-
alize the result �3.15� for all �m ,q�0: however, one cannot
exclude that an additional term with zero space-time diver-
gence can be added to the solution �3.15�, still satisfying Eq.
�3.16�.

According to the discussion of Sec. II D one can try to use
the result �3.15� by evaluating the optical conductivity with
the symmetric bubble �2.33�. In the specific case of the
DDW order, this would correspond to evaluating the follow-
ing current-current correlation functions:

�ij
DDW�q,i�m�

= − 2
T

N



k,i�n

RBZ

Tr�G�k−,i�n + i�m�Vi�k�G�k+,i�n�Vj�k�� .

�3.17�

As it was explained in Sec. II D the ansatz �3.17� guarantees
the correctness of the dc conductivity, and in general can be
used to study the low-frequency conductivity. Nevertheless,
one can check that the bubble �ii

DDW�0� is not compatible
with the diamagnetic tensor �3.7�, violating again the GI con-
dition �2.20� checked above for �ii

���. The origin of this vio-
lation is obvious, viz. instead of the asymmetric bubble
�2.22� with one full and one bare vertex that would maintain
the GI condition �2.20�, we used the symmetric correlation
function �2.33�. Thus the issue arises whether the diamag-
netic tensor ��	 can also be modified to become compatible
with the bubble �3.17�. As we shall see in the next section,
the diamagnetic tensor and sum rule corresponding to the
approximate bubble �3.17� can be obtained without further
assumptions by analyzing the properties of the reduced
Hamiltonian �3.2�.

IV. THE REDUCED MODEL

An approach often proposed in the literature to deal with
the DDW state is that to consider directly the mean-field

Hamiltonian �3.2� as the starting point.31,34–40 The idea is that
at low energy the reduced model �3.2� captures the important
physics of the system, so that one can consider it as a starting
microscopic Hamiltonian, describing noninteracting quasi-
particles. In this case the Green’s function �3.4� does not
provide any more an approximation, but it is the correct one
for the solvable, quadratic model �3.2�. Since this Hamil-
tonian describes noninteracting quasiparticles, it can be
solved exactly and the corresponding conductivity is given
by the bare bubble. This point of view was taken in Ref. 31
where an unusual form of the optical-conductivity sum rule
was obtained. One can notice that any distinction in the
Hamiltonian �3.2� in the total energy between a kinetic and a
potential part, as can be done for the Hamiltonian �2.1�, be-
comes somehow ambiguous, so that the result of Ref. 31 is
not surprising.

In what follows we compare this picture with the tradi-
tional one, and show that since the dc conductivity calculated
in both approaches appears to be the same, one can also
estimate the low-energy sum rule of the microscopic model
�2.1� by considering the one realized in the reduced model
�3.2�.

A. The diamagnetic tensor, current operator and the sum rule
for the reduced model

Let us now consider the Hamiltonian �3.2� as the starting
microscopic model and analyze how all the considerations
made in Sec. II can be applied in this case. Since the Hamil-
tonian �3.2� describes noninteracting quasiparticles, it is
straightforward to calculate the current-current correlation
function and the electrical conductivity, because in the ab-
sence of an interaction term the Eq. �2.24� for the vertex has
a trivial solution ���p+ , p−�= �̃��p+ , p−�, where �̃��p+ , p−� is
the bare vertex for the model DDW Hamiltonian �3.2�. Nev-
ertheless, one should be careful and take into account that
this vertex is different from the bare vertex �2.16� for the
Hamiltonian �2.1�. This can be understood by deriving the
particle current operator compatible with the conservation
law �2.17� and with the equations of motion for the operators
c and c†,36,37,39,40

j�q,t� =
1

N


k,�

�vk
Fck−q/2�

† ck+q/2� − ivk
Dck−q/2�

† ck+Q+q/2�� ,

�4.1�

The first term of the previous expression relates as usual the
particle current to the band velocity vk

F. The second term,
which only appears for nonvanishing D0, takes into account
the contribution of the orbital currents to the electrical con-
ductivity, arising when the DDW order is established. Ob-
serve that in the reduced model �3.2� the term proportional to
D0 appears as an additional, temperature dependent band,
which couples k and k+Q electrons, and as a consequence a
corresponding term appears in the definition of the current.
By rewriting the electric current operator �4.1� using the
spinors �2.2�, one has
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ji�0,t� =
1

N


k�

RBZ

�k�
† Vi�k��k� �4.2�

and, accordingly, the bare vertex reads:39

�̃��k − q/2,k + q/2� = �Vi�k�,�0�, q → 0, �4.3�

where Vi�k� is the generalized velocity defined in Eq. �3.15�.
Substituting the bare vertex �4.3� and the Green’s function
�3.4� in the Ward identity �2.25� one can easily see that it is
satisfied. Moreover, since for noninteracting quasiparticles
the full and bare vertex functions coincide, the correlation
function ���̃� of Eq. �2.21�, evaluated with the bare vertex �̃
of Eq. �4.3�, has two properties, �i� it is the exact one for the
quadratic model �3.2�; �ii� it coincides with �ij

DDW in Eq.
�3.17�, which is an approximation for the full model �2.1�. As
a consequence, the sum rule corresponding to the bubble
�ij

DDW can be obtained by the knowledge of the stress tensor
for the reduced system. Observe that the current operator
�4.1� is also obtained when the Peierls substitution is per-
formed directly in the reduced model �3.2�. As we discussed
in Sec. II A, after the Peierls substitution both the current
operator and the diamagnetic tensor can be derived from
H�A�, according to Eq. �2.10�. As a consequence, in the re-
duced model not only the current operator but also the dia-
magnetic tensor �ii is modified, containing an extra term for
D0�0,31

��ii	 = −
1

2N


k�

��k�ck�
† ck�	 + iDk�ck�

† ck+Q�	� . �4.4�

When the operator averages are evaluated, or analogously
Eq. �2.18� is used, one finds that the sum rule for the reduced
model is

WDDW�D,T�
��e2a2/V�

= −
1

N


k

RBZ

Ek�f�
+,k� − f�
−,k�� , �4.5�

where Ek and 
±,k were already defined after Eq. �3.6�. Equa-
tion. �4.5� was derived using the fact that �x,yvk

F

=2ta2 cos kx,ya �and �x,yvk
D= ± �D0 /2�a2 cos kx,ya�, and it re-

duces to Eq. �1.3� for D0=0.
Once more, the result �4.4� is consistent with the GI for

the reduced model. Indeed, if the bubbles �DDW�q , i�m�
�3.17� are evaluated in the static limit, instead of the result
�3.14� for ���� one has

�ii
DDW�0,0� = −

2

N


k

RBZ
�vi

FD + vi
D��2

E3 �f�
+� − f�
−��

+
�vi

F� − vi
DD�2

E2 �f��
+� + f��
−�� . �4.6�

If now one integrates by parts the second term of Eq. �4.6�
one finds that

−
2

N


k

RBZ
�vi

F� − vi
DD�2

E2 �f��
+� + f��
−��

=
2

N


k

RBZ

�f�
+� − f�
−��
�

�k

�vi
F� − vi

DD�
E

=
2

N


k

RBZ
�vi

FD + vi
D��2

E3 �f�
+� − f�
−��

−
1

N


k

RBZ

E�f�
+� − f�
−�� ,

and as a consequence the GI relation �ii
DDW�0 ,0�= ��ii	 with

��ii	 given by Eq. �4.4� is satisfied, as expected when the
exact vertex � in included in the bubble.

A comment is in order now about a third possible
approach proposed in the literature38 for the analysis of
the reduced model �3.2�. By rewriting the quadratic Hamil-

tonian �3.2� as H=
k,�
RBZ�k�

+ Ĥk�k� the matrix Ĥk can be
diagonalized by means of an unitary transformation

Uk, Ĥ=Uk�kUk
+ where �k=diag�
+ ,
−�. According to

our definition �4.1�, the current is derived from Ĥk�A�, so

that it corresponds to jDDW= �1/N�
k�
RBZ�k�

+ ��kĤk��k�

= �1/N�
k�
RBZ�k�

+ �k�Uk�kUk
+��k� �see also Ref. 40�. Let us

introduce the spinors �k�=Uk
+�k� which diagonalize the

Hamiltonian matrix Ĥ, H=
k�
RBZ�k��k�k�. Then, by making

the assumption that the gauge field couples by Peierls ansatz
not to �k� but to the new quasiparticle operators �k�, one
would calculate the current starting from �k�A�, so that the
current, the diamagnetic term and the static limit of the
current-current bubble would be defined as:38

jQP =
1

N


k�

RBZ

�k��k�k�k� =
1

N


k�

RBZ

�k�
+ Uk��k��Uk

+�k�,

��ii,QP	 =
1

N


k�

RBZ � �2
+

�ki
2 f�
+� +

�2
−

�ki
2 f�
−� ,

�ii,QP�0,0� = −
1

N


k�

RBZ �� �
+

�ki
2

f��
+� + � �
−

�ki
2

f��
−�� .

Observe that this approximation is still GI in the sense that it
is easy to see that �ii,QP and �ii,QP�0� defined above satisfy
the condition �2.20�. However, this approximation has no
relation with the microscopic starting model, in the way we
explained in Sec. II. For this reason, we do not comment
further on this approach, and we analyze instead the result
obtained with the current operator �4.1� and the bubbles
�3.17�, whose correspondence with the microscopic model
we established above.

B. Temperature dependence of the spectral weight

Once that we clarified the different approximations used
in deriving the two sum rules �3.7� and �4.5�, let us discuss
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ture dependence of the spectral weight is concerned. Two
observations should be kept in mind, �i� the overall varia-
tions of the spectral weight in the DDW state are not ex-
pected in general to be large if quite small gap values
D�0� / t�1 are considered; �ii� in Eqs. �3.7� and �4.5� the
temperature variation of both the gap and the chemical po-
tential � contribute to the shape of W�T�. In the case of free
electrons, the variation of ��T� is almost negligible com-
pared to the temperature variation of the occupation number,
given by the Fermi function. Indeed, even considering the
temperature variation of ��T� the result �1.4� is only modi-
fied by terms of order T4. In the case of Eqs. �3.7� and �4.5�
also the band structure is varying in temperature, and it is
important to keep track of this by solving at each tempera-
ture the self-consistent equation for the chemical potential.
Here, instead of solving explicitly Eq. �3.5�, we adopt a gen-
eral mean-field temperature dependence for D0�T�
=D�0�g�T /TDDW�, with g�x�= �1−x4 /3��1−x4, as shown in
the left panel of Fig. 1. In the right panel of Fig. 1 we also
present the temperature dependence of the chemical potential
in the DDW state, as one can see, below TDDW there is an
inversion of tendency of ��T� due to the opening of the gap.
The temperature dependence of the spectral weight in the
DDW state according to Eq. �3.7� �W�D ,T�� and �4.5�
�WDDW�D ,T�� is reported in Fig. 2, where also the tight-
binding spectral weight �1.4� �W�T�� is shown for compari-
son. Here we used a small gap value, D�0�=2.5TDDW=0.3t,
and doping �=0.1. The influence of the chemical-potential
variation are evident comparing the right panel of Fig. 2,
where W�D ,T� and WDDW�D ,T� are evaluated keeping �
constant �at the value it has in the normal state�, and the left
panel, where the density is constant. In addition, we see that
for this value of D�0� the overall spectral-weight variations
are small in the DDW state. However, it is found that the
definition �3.7� leads to a smooth decrease of the spectral
weight below TDDW, in analogy with the results for a SC

transition, while the definition �4.5� gives an increase. Such
variations are quantitatively �but not qualitatively� modified
if the temperature variations of the chemical potential are not
properly taken into account, see right panel of Fig. 2. Ob-
serve that the relative variations of W�T� between T=0.16t
and T=0 are never larger than �1.2%, and cannot be appre-
ciated on the scale of the figure reported in Ref. 40.

Even though a detailed description of cuprates is not the
main aim of our paper, we find nevertheless useful to com-
pare our results for a choice of parameters appropriated for
HTSC. Since on this respect different attitudes are present in
the literature, we briefly recall here the phase diagram ana-
lyzed in Ref. 26 within the more general attitude of investi-
gating the consequences of describing the pseudogap state
with a k-space modulated charge density wave. In Ref. 26 it
was shown that one outcome of this description is the possi-
bility to interpret the leading-edge shift observed in photo-
emission experiments as due to a particle-hole gap. In par-
ticular, for a band dispersion with a next-nearest-neighbors
hopping term t�=0 the hole-pockets Fermi surface formed by
doping the DDW system with respect to half-filling is a sim-
plification intended to reproduce the arcs of Fermi surface
observed experimentally. A simple calculation shows that in
such a case the gap measured by ARPES at the M points
corresponds approximately to D0− ���. As a consequence,
D0�0� and TDDW do not correspond directly to the maximum
gap value and the T* temperature measured by ARPES, but
both are quite larger, as shown in Ref. 26 where the values of
the DDW gap and of the temperature TDDW were chosen to
properly reproduce the phase diagram of Bi2212 compounds.

In agreement with Ref. 31 we keep here this attitude and
use a doping and temperature dependent DDW gap
D0�T ,��=cTDDW���g�T /TDDW�, where TDDW���=0.16t�1
− �� /�0�4� vanishes at the critical doping �0=0.2 for DDW
formation, and c=7 is a fitting parameter.26 Since the result-

FIG. 1. �Color online� Left panel, Temperature dependence of
the DDW gap according to the function g�x� defined in the text.
Right panel, ��T� in the normal state �dashed line� and in the DDW
state �solid line�, obtained solving the self-consistency equation
�3.6� for the particle number �with D0=0 for the normal state�.

FIG. 2. �Color online� Spectral weight WDDW�D ,T�, W�D ,T�,
and W�T�, according to Eqs. �4.5�, �3.7�, and �1.4�, respectively, in
units of e2�a2 /V. We used here D�0�=2.5TDDW=0.3t and �=0.1.
Left panel, results obtained using the chemical potential obtained
solving the self-consistency equation �3.6� for the particle number
with D0�0 �for WDDW�D ,T� and W�D ,T� and D0=0 �for W�T���,
respectively, see Fig. 1. Right panel, evaluation of WDDW�D ,T� and
W�D ,T� using the chemical potential of the normal state.
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ing temperature dependence of the sum rule �4.5� was al-
ready shown in Ref. 31, we just report here for comparison
the behavior of the two sum rules W�D ,T� in Eq. �3.7� and
WDDW�D ,T� in Eq. �4.5� for this choice of parameters at �
=0.16. As it can be seen in Fig. 3, the relative variation of the
spectral weight below TDDW is made now more pronounced,
enhancing the differences between the two possible ap-
proaches followed in deriving the sum rule. It is then clear
that the standard sum-rule derivation leading to W�D ,T� in
Eq. �3.7� cannot be consistent with the experiments, since no
decrease of the spectral weight has been observed in the
pseudogap phase of cuprates. The result WDDW�D ,T� in Eq.
�4.5� is instead resembling more closely the experimental
findings, in particular if we consider that at this doping level
the room temperature below which the data in Refs. 1, 2, and
4 are reported corresponds to T / t�0.1, so that the overall
measured temperature dependence of W�T� would corre-
spond in our picture to the DDW result �4.5�. Indeed, as we
show in the right panel of Fig. 3, the WDDW�D ,T� evaluated
according to Eq. �4.5� still displays a T2 temperature depen-
dence, but with a larger slope, as observed experimentally.
This approach would allow one to understand why the
spectral-weight increase looks like a “standard” free tight-
binding model, but with a much larger slope. However, as we
shall see in the next section, the comparison with the experi-
ments is made much more involved when the optical con-
ductivity corresponding to the sum rule �4.5� is evaluated.
Finally, one can in principle extend this analysis to the case
where also SC is added, but since also the experimental situ-
ation is not clear on this respect we refer to Ref. 31 for a
discussion about the SC state.

C. The role of a next-nearest-neighbors hopping term

Up to now we did not consider the possibility of a next-
neighbors hopping term t� in the bare band dispersion �k.

Indeed, from one side we wanted to simplify the notation
while discussing the issue of the relation between gauge in-
variance and sum rule, and from the other side we believe
that even when comparing with cuprates the case t�=0 is
enough to reproduce phenomenologically the arc of Fermi
surface observed in the pseudogap phase �see discussion
above�. However, for the sake of completeness, we report
here briefly the modifications induced in the sum rule when a
t� term is included in the band dispersion, so that

�k = sk + pk,

sk = − 2t�cos kxa + cos kya� ,

pk = 4t� cos kxa cos kya . �4.7�

In the DDW state the perfect nesting condition is lost due to
the t� term, so that �k+�k+Q=2pk ,�k−�k+Q=2sk and the two
quasiparticle branches in the DDW state become 
±,k= pk

−�±Ek, where Ek=�sk
2 +Dk

2. As a consequence, given the
relation �2.13� between the sum rule and the diamagnetic
tensor, and the definitions �2.15� and �4.4� of the diamagnetic
tensor for the original and the reduced model, respectively, it
is easy to see that Eqs. �1.4�, �3.7�, and �4.5� get modified as

W�T�
��e2a2/V�

= −
1

N


k

�� + p�f�
� , �4.8�

W�D,T�
��e2a2/V�

= −
1

N


k

RBZ � s2

E
�f�
+� − f�
−�� + 2p�f�
+� + f�
−�� ,

�4.9�

WDDW�D,T�
��e2a2/V�

= −
1

N


k

RBZ

�E�f�
+� − f�
−�� + 2p�f�
+� + f�
−��� ,

�4.10�

where the explicit dependence on k is omitted. In Fig. 4 we
compare again the temperature dependence of the spectral
weight in the different cases, for t�=0.3t, �=0.1, TDDW
=0.12t and D�0�=4TDDW. Even though the introduction of
the t� term modifies the temperature dependence of the
chemical potential in the normal and DDW state �due to the
shift of the Van Hove singularity which is now below the
Fermi level at �=0.1�, the general trend of Figs. 2 and 3 is
confirmed. Indeed, WDDW�D ,T� is larger than W�T� below
TDDW, while W�D ,T� is smaller. In particular, it is worth
noting that apart from possible quantitative differences with
respect to the case t�=0, the exact form of the band disper-
sion is irrelevant as far as the main issue discussed in the
preceding sections, i.e., the fact that different approximations
for the current-current correlation functions lead to different
results for the optical-conductivity sum rule. For this reason,
we do not discuss further in the following the role of a t�
term, and remind the reader for example to Refs. 40 and 41,
where this issue is investigated in more details.

FIG. 3. �Color online� Left panel, spectral weight WDDW�D ,T�,
W�T�, and W�D ,T� in units of e2�a2 /V for a choice of parameter
values appropriate for cuprates �see the discussion in the text�. Here
we show the results for �=0.16, corresponding approximately to
optimal doping, and we calculate the chemical potential self-
consistently. Right panel, spectral weight plotted as a function of
�T / t�2: one can see that a T2 temperature dependence is still recov-
ered for WDDW�D ,T� in a wide range of temperatures.
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D. The optical conductivity of the reduced model

As we discussed in the preceding sections, one would
expect that our result �4.5� for WDDW�D ,T� is only valid at
low energy scales, possibly below the plasma frequency,
which can be thought as a general cutoff for any tight-
binding based description of the system. In principle one
could also expect that the low-energy theory �3.2� is valid at
even lower energy scales, but since at the plasma energy one
still finds experimentally strong variation with respect to the
naive estimate �1.4�, it is plausible that a quite larger cutoff
holds here for the tight-binding model itself. To analyze the
dependence of the result �4.5� on the cutoff frequency we
need an explicit calculation of the optical conductivity ob-
tained with the bubble �3.17�.

By using the spectral representation of the Green’s func-
tions the current-current correlation function �ii

DDW �3.17�
can be evaluated in analogy with �ii

��� in Eq. �3.12�, with the
bare vertices �i substituted by the full one �i�k ,k� of Eq.
�3.15�. To take into account the effect of disorder we make
the simplest ansatz of substituting the delta functions associ-
ated to a quasiparticle pole in the spectral representation
�3.11� with a Lorentzian of finite width w �w=1/ �2�tr�,
where �tr is the transport time�,

��z� → M�z� =
1

�

w

z2 + w2 . �4.11�

As a consequence, after analytical continuation in Eq. �3.12�,
we obtain

�DDW���

= −
2�e2

V


k

RBZ � dz
f�z + �� − f�z�

�
� ��vF − DvD�2

E2

��M�z + � − 
+�M�z − 
+� + M�z + � − 
−��z − 
−��

+
��vD + DvF�2

E2 �M�z + � − 
+�M�z − 
−�

+ M�z + � − 
−�M�z − 
+�� , �4.12�

where vF and vD refers to the component in a given x or y
direction.

As already observed in Ref. 37, and more recently in
Refs. 40 and 41, the optical conductivity is composed of two
contributions, due to the splitting of the original single band
�k in two new bands 
± after the gap opening. In Eq. �4.12�
the first line describes intraband excitations �corresponding
to the product of two M functions evaluated at the same
quasiparticle branch�, while the second line takes into ac-
count interband processes. It is easy to see that this second
contribution is only possible when ��2��� �at low tempera-
tures�. Indeed, when the system is doped with respect to
half-filling �����0� the smallest energy difference between
occupied and unoccupied states in different branches is equal
to 2���, and it is realized at the points �±� /2 , ±� /2� where
the energy Ek vanishes and the two bands merge. The first
contribution has instead a Drude-type shape, as it is shown in
Fig. 5, where we report the optical conductivity at T=0 for a

system with and without DDW gap. Here we used the set of
parameters discussed above for cuprates, at �=0.13. When
compared with the free-electron conductivity at the same
temperature, one can see that the Drude peak is smaller in the
DDW state, because part of the spectral weight has been
transferred to the interband processes. To quantify this trans-
fer of spectral weight we integrate numerically the optical
conductivity �DDW��� �4.12�, and its analogous ���� at D0

=0, evaluating for a given cutoff frequency � the quantity,

N�DDW���� = 2�
0

�

��DDW�����d��, �4.13�

which verifies NDDW��→��=WDDW�D ,T=0� and N��
→��→W�T=0� for the DDW and normal state, respec-
tively.

In the inset of Fig. 5 we show NDDW��� and N��� at T
=0 corresponding to the calculated optical conductivities. As
we can see, at low energy the formation of a DDW state
leads to an overall decrease of spectral weight, since intra-
band processes are partly suppressed. However, at higher
energy interband excitations are allowed and the spectral
weight lost in the Drude peak is over-compensated, giving
rise to an overall increase of WDDW�D ,T=0� in the DDW
state compared to W�T=0� in the normal state. For a value of
t�0.25 eV one sees that in the case of Fig. 5 the crossing of
NDDW��� with respect to N��� is already satisfied at cutoff
frequencies smaller than the plasma frequency ��4t�, even
though NDDW saturates at higher frequencies. Of course it is
evident that the determination of the exact frequency at
which the sum rule W�T� or WDDW�T� are exhausted depends
on the choice of parameters. For example, at smaller doping
or smaller D0 �which both lead to a smaller value of ��� in

FIG. 4. �Color online� Spectral weight in the presence of a t�
term in the band dispersion. Here we show WDDW�D ,T�, W�D ,T�,
and W�T�, according to Eqs. �4.10�, �4.9�, and �4.8�, respectively, in
units of e2�a2 /V. We used here t�=0.3t, TDDW=0.12t, D�0�
=4TDDW, and �=0.1. The chemical potential is evaluated self-
consistently at each temperature by solving Eq. �3.6� in the presence
of a t� term in the band dispersion. Observe that near TDDW a small
decrease of WDDW with respect to W�T� is observed, due to the
change of chemical potential near TDDW.
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the DDW state, see Fig. 1� the intraband processes occur at
lower energy, so that NDDW����N��� will be satisfied at
lower cutoff energy �. In Fig. 5 we report one of the cases
when the cutoff frequency is larger, because the chemical
potential shifts from �=−0.28t in the normal state to �
=−0.69t in the DDW state, due to the large value of the
DDW parameter �D0=0.92t�, pushing interband processes at
relatively high energies. It is interesting to observe that the
optical conductivity in the DDW state reported in Fig. 5,
which was evaluated with the ansatz �3.17� for the current-
current correlation function, has the same qualitative behav-
ior of the optical conductivity reported in Ref. 41, where the
bare bubble approximation �2.21� was considered for the cor-
relation function. Indeed, in the bare bubble approximation
the optical conductivity has the same structure of Eq. �4.12�
�i.e., a Drude term plus interband processes�, but with vD
=0. However, the two approaches lead to two quantitatively
different temperature dependences of the sum rule. Indeed in
the absence of the vD term in Eq. �4.12�, coming from the
vertex corrections, the spectral weight lost in the Drude term
when the DDW state is formed would not be compensated

any more by the interband processes, so that the total spectral
weight NDDW��→�� in the DDW state would be always
lower than the spectral weight N��→�� in the normal state,
as observed in Ref. 41.

In Fig. 6 we report the optical conductivity in the DDW
state at several temperature between T=0 and TDDW=0.13t at
the doping �=0.13. As one can see, when the temperature
increases the interband processes shift to lower frequency,
due to the decrease of the absolute value of the chemical
potential �see right panel of Fig. 1�. As a consequence, the
spectral weight is transferred again towards the Drude peak,
and the overall balance of spectral weight leads to a decrease
of WDDW�D ,T�. In the inset of Fig. 6 we show also the inte-
grated spectral weight NDDW��M� and N��M� at the same
temperatures of the main panel, with a cutoff frequency
�M =6t. Even though this estimate of the spectral weight is
much less accurate than the direct evaluation of Eq. �4.5�,
due to lower numerical accuracy of this procedure, we find
the same behavior discussed in the preceding sections while
computing directly Eq. �4.5�. Indeed, we can see that the
spectral weight increases in the DDW state with respect to

FIG. 5. �Color online� Optical conductivity in
units of e2�a2 /V at zero temperature for a free
tight-binding system and for the DDW state at
�=0.13 ��=−0.69t at T=0 in the DDW state, w
=0.1t were used�. For convenience we also report
the frequencies in cm−1, as it is customary in the
experiments. Inset, frequency variation of N���
according to Eq. �4.13�. Observe that at low cut-
off energy the spectral weight in the DDW state
is smaller than in the normal state.

FIG. 6. �Color online� Optical conductivity in
units of e2�a2 /V at various temperature for the
DDW state at �=0.13, TDDW=0.13t. In the upper
x-axis the frequencies are reported in cm−1. Inset,
comparison between the temperature dependence
of the integrated spectral weight NDDW��M� and
N��M� for the DDW and normal state, respec-
tively. The cutoff is �M =6t.
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the normal state, even though the relative contribution of the
Drude term is lower in the DDW state than in the normal
state.

A comment is in order now about the role of disorder. In
the preceding sections we reported the numerical results ob-
tained for clean systems, but to amplify the differences be-
tween the conductivity of a noninteracting system and of the
DDW state we used in Figs. 5 and 6 a quite large value of the
inverse scattering time w=0.1t, as appropriate, for example,
to reproduce qualitatively the large Drude peak observed in
BSCCO samples at about 100 K.2,4 As a consequence, also
the self-consistency equation �3.6� for the particle number
and the sum rules WDDW�D ,T� and W�T� should be evaluated
in the presence of disorder for a given doping. The main
difference is only in the absolute value of the spectral
weight, while the relative difference between the case with or
without DDW is the same. In the Appendix B we discuss the
modifications to the particle number and spectral weight
equations in the presence of disorder, that we used in com-
puting the optical conductivity in Figs. 5 and 6.

V. DISCUSSION

In the present paper we analyzed a possible approach to
determine a GI approximation for the optical conductivity in
a system which displays a transition to a d-wave modulated
CDW or flux phase. As we explained in detail in Sec. II the
requirement of GI of a theory fixes the relation �2.20� be-
tween the current-current correlation function and the dia-
magnetic term. To understand better the expected domain of
applicability the sum rule WDDW�D ,T� �4.5� let us summa-
rize the assumptions that led us to this rule. We have checked
in Sec. III B �Eq. �3.13�� that the bubble ���� of Eq. �2.21�,
evaluated with the mean-field DDW Green’s function �3.4�
and the bare vertex �, does not satisfy the GI condition
�2.20� when the standard diamagnetic term �3.7� is consid-
ered. As discussed in Sec. II C, this situation is quite stan-
dard, and considering the WI �2.26� this violation of the
gauge invariance can be attributed to the k-dependent char-
acter of the DDW gap Dk, which makes necessary the use of
the full vertex ��k ,k� instead of the bare one ��k ,k�.

In general the vertex function is determined by solving
the integral equation �2.24�, but in the static limit it reduces
to the expression �2.26�. Since we do not know an analytical
solution at finite frequencies and momenta of the vertex
��k+ ,k−�, corresponding to the microscopic many-body
Hamiltonian �2.1�, we can try to use our knowledge of its
static limit to give a better approximation than Eq. �2.21� for
the current-current correlation function. More precisely, we
showed in Sec. II D that the dc conductivity derived from the
symmetric bubble �ij

sym �2.33�, where two full vertex func-
tions in the static limit appear, coincides with the exact result
at T=0.39,45 Even though this procedure allows us to cor-
rectly reproduce the optical conductivity in the low-
frequency limit, it does not solve the problem of knowing a
priori the sum rule corresponding to this approximated opti-
cal conductivity. Indeed, since this symmetric bubble is not
exact for the full model �2.1�, and in contrast to the bubble
�2.22� contains two full vertices, one cannot expect that the

optical conductivity calculated using this bubble would sat-
isfy the usual sum rule corresponding to the diamagnetic
tensors �2.15� or �3.7�.

However, this last issue can be solved exactly by applying
the same GI arguments to the reduced quadratic model �3.2�.
Indeed, the static limit �i��i+Vi�k� of the full vertex func-
tion, obtained from the original interacting model, can also
be considered as a bare vertex �̃ for the DDW Hamiltonian
�3.2�. Moreover, since this Hamiltonian describes noninter-
acting quasiparticles, the bare and the full vertex coincide, so
that the symmetric correlator �DDW in Eq. �3.17� is the exact
one for this model. As a consequence, the diamagnetic term
�4.4� of the reduced model gives the sum rule WDDW�D ,T�
�4.5� for the symmetric current operator �3.17�, which is the
exact one within the quadratic theory �3.2� and at the same
time provides us with a good approximation for the optical
conductivity of the true interacting system, at least at low
energy.

The last issue we addressed in the present paper is to
analyze to which extent the sum rule �4.5� can be related to
the behavior of the microscopic Hamiltonian �2.1�. In gen-
eral, it is believed that in the presence of interactions the
restricted sum rule �1.3�, derived for the electrons within the
lowest conducting tight-binding band, is still valid, provided
that the occupation number nk� takes into account the effect
of the interactions. In this case, we should rely on the esti-
mate W�D ,T� in Eq. �3.7� for the sum rule in the DDW state.
However, this approach has two disadvantages, �i� we cannot
derive the optical-conductivity which would lead to this sum
rule; �ii� no general argument holds to justify why this atti-
tude is the correct one to estimate, at mean-field level, the
sum rule for the interacting microscopic model. Motived by
these observations we argued that in the case of interactions
leading to a DDW formation a better mean-field approach to
the transport properties is provided by the calculation of the
optical conductivity by means of the bubbles �DDW. Thus, to
obtain the correct mean-field approximation for the spectral-
weight behavior is not sufficient to modify the occupation
number nk� below TDDW, but it is more likely that a proper
redefinition of the diamagnetic tensor is needed. As a conse-
quence, the sum rule should be estimated by means of Eq.
�4.5� instead of Eq. �3.7�, leading to an increase of spectral
weight below TDDW. However, this assumption would re-
quire also that the integrated spectral weight NDDW��� in the
DDW state becomes larger than the N��� for the noninter-
acting system at some “low” frequency �M. As we discussed
in Sec. IV D, such cutoff frequency �M turns out to be in
general lower than the plasma edge, but its precise value
depends crucially on the parameters of the DDW transition
�doping, order parameter at T=0, etc.�. Moreover, it is not
clear yet if a �M below the plasma frequency is a sufficiently
low-energy scale for the interacting tight-binding model,
since no universal definition exists of the frequency itself
below which the restricted sum rule should be applicable.

Finally, a comment is in order now about the comparison
between our results and the experimental optical data for
cuprates. A first issue is related to the fact that the most
recent experiments show that the temperature variation of the
spectral weight is larger than expected in a tight-binding es-
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timate also in optimally doped and overdoped compounds4,6

�see also Appendix A�, i.e., eventually at doping larger than
the critical doping �0=0.2 for the charge ordering phenom-
enon. This could mean that a more general effect of the
strong correlations present in these materials can be respon-
sible for the large temperature variation of W�T�. This pos-
sibility has been indeed investigated recently in Ref. 50,
where W�T� has been evaluated by means of the DMFT �dy-
namical mean field theory� approach to the Hubbard model,
which seems to reproduce the large temperature variations of
W�T� observed in the experiments. A second issue arises
about the lack, in the experiments, of a clear signature of an
interband conductivity as the one reported in Fig. 4. In par-
ticular, BSCCO compounds, that were used as a paradigm
for the choice of DDW parameter values in cuprates,26 ex-
hibit in general a quite featureless conductivity, with a slowly
decaying high-frequency tail. However, in different families
of cuprates, displaying a similar spectral-weight behavior,
clear signatures of charge ordering have been indeed ob-
served in the optical spectra, even though located at much
lower energy scales with respect to the one obtained here
using the parameter values for BSCCO compounds. This is
the case of LSCO and YBCO, where far-infrared features,
well separated from the Drude peak, have been measured
recently.47 In both Refs. 48 and 49 these features were actu-
ally interpreted as due to a charge-ordering phenomenon,
described by means of some different theoretical approaches
which did not allow one to discuss at the same time the issue
of the spectral-weight behavior. For these reasons, even
though the analysis presented here cannot be conclusive as
far as the optical spectra of HTSC are concerned, we believe
that a deeper investigation of the role of charge degrees of
freedom can eventually lead to a better understanding of the
conductivity of cuprates. At the same time, the analysis pre-
sented here could be extended to other systems like 2H-
TaSe2, where a k-space modulated CDW forms30 and where
clear signatures of a Drude response accompanied by a mid-
infrared peak have been observed in the optical spectra.29
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APPENDIX A: FAILURE OF THE
TIGHT-BINDING ESTIMATE

As we noticed in the Introduction, even though a T2 tem-
perature decrease of W�T� is observed in the experiments, the
measured slope is quite larger than the one expected within
the simple noninteracting tight-binding estimate �1.4�. To
quantify this discrepancy in the most accurate way, we evalu-
ate explicitly the spectral weight for the tight-binding model
by including also a next-nearest-neighbors term in the band

dispersion, see Eq. �4.7�. As a consequence, W�T� is given by
Eq. �4.8�.

To correctly reproduce the Fermi surface of BSCCO and
LSCO compounds we will assume t=0.3eV and t�=rt, where
r=0.3 for BSCCO and r=0.2 for LSCO �where the Fermi
surface changes topology in the overdoped region, becoming
electronlike at about �=0.2 doping51�. The results of
W�T� /W�0� as a function of �T / t�2 from Eq. �4.8� are re-
ported in Fig. 7 for several doping �by fixing as usual the
correct chemical potential at each doping and temperature
from the self-consistency equation for the particle number�.
In the left panel we report the estimate for BSCCO, that
should be compared to the experimental data �for under-
doped, optimally doped, and overdoped samples� of Refs. 1,
2, and 4. Observe that in Refs. 2 and 4 the variation of
W�T� /W�0� between room temperature and T=0 of the order
of 20%–5% when measured at various cutoff frequencies,
while the tight-binding estimate in Fig. 7 never exceed the
0.6% �for t=0.3 eV, T=300 K corresponds to �T / t�2

=0.0074�. Analogous considerations hold for the comparison
between the measured spectral weight in LSCO �Ref. 6� and
the estimate �4.8� reported in the right panel of Fig. 7. A
comment is in order now about the role of the Van Hove
singularity �VHS� in the density of states. Indeed, according
to Eq. �1.4�, where the t�=0 case was considered, the coef-
ficient c���=�N����+N��� could increase considerably by
approaching the VHS. This effect is indeed seen in the
curves at �=0.12 and �=0.16, where the initial slope of
W�T� is quite large. However, as soon as the temperature
increases the effect of the VHS is washed out very rapidly
and the overall variation in the range of T between 0–0.1t
attains the same values found for the case t�=0.3t. Moreover,
for the overdoped case �=0.26 the slope of W�T� /W�0�
agrees very well with the approximation c���=1/4�t of the
parabolic band dispersion �PB in the figure�, which would
give the value �2c��� /6=0.13/ t for the coefficient in Eq.
�1.4�. For these reasons one can conclude that the t� term in

FIG. 7. �Color online� Spectral weight W�T� /W�0� according to
Eq. �4.8� for t�=0.3t �left panel, appropriate for BSCCO �Refs. 2
and 4�� and t�=0.2t �right panel, appropriate for LSCO �Ref. 6�� at
various doping. In the right panel we also report the result obtained
with the estimate �1.4� and the parabolic band �PB� approximation
for c���=1/4�t, using the value W�0�=0.682t at �=0.26.
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the band dispersion �4.7� has a minor role in determining the
spectral-weight variations, and indeed it was only briefly dis-
cussed in Sec. IV C of the present work.

APPENDIX B: SUM RULE IN THE
PRESENCE OF DISORDER

As we did in Sec. IV D we will take into account the
effect of disorder by using the substitution �4.11� in the spec-
tral representation �3.10� of the Green’s function. To see how
Eq. �3.6� is modified we rewrite it in terms of the spectral
function,

n =
2T

N



k,i�n

RBZ

Tr�G�k,i�n��ei�n0+

=
2

N


k

RBZ � dz�M�z − E� + M�z + E��f�z − �� . �B1�

Analogously, the definition �4.4� of the diamagnetic ten-
sor in the DDW state can be expressed as

��ii	 = −
T

N



k,i�n

RBZ

��kTr�G�k,i�n��3�

− DkTr�G�k,i�n��2��ei�n0+

= −
1

N


k

RBZ

Ek� dz�M�z − E� − M�z + E��f�z − �� .

�B2�

Observe that if one sets M�z�=��z� the results �3.6� and �4.5�
can be recovered, and for D0=0 one finds the corresponding
expressions for the normal state. At T=0, which is the case
considered in Fig. 5, the previous equations simplify. Indeed,
since the Fermi functions reduce to a step function, one has

�
−�

�

dzM�z − E�f�z − �� = �
−�

�

dz
1

�

w

z2 + w2

=
1

�
�arctan

� − E

w
+

�

2
 �B3�

so that the self-consistency equation for the particle number
and the equation for the spectral weight can be written as

n − 1 =
2

�N


k

RBZ �arctan
� − E

w
+ arctan

� + E

w
 , �B4�

WDDW�D,T = 0�
��e2a2/V�

= −
1

�N


k

RBZ

Ek�arctan
� − E

w
− arctan

� + E

w
 .

�B5�

Observe that here we did not consider the effect of the DDW
formation on the transport scattering time, which can be
present. For a detailed discussion of impurity scattering in
the DDW state see Ref. 35.
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