1,746 research outputs found
Geometric phase shift for detection of gravitational radiation
An effect of geometrical phase shift is predicted for a light beam
propagating in the field of a gravitational wave. Gravitational radiation
detection experiments are proposed using this new effect, the corresponding
estimates being given.Comment: LaTeX2e, 12 p
3,5-Bis(4-chlorobenzylidene)-1-methylpiperidin-4-one
In the title molecule, C20H17Cl2NO, the central heterocyclic ring adopts a flattened boat conformation. The dihedral angles between the planar part of this central heterocyclic ring [maximum deviation = 0.004 (1) Å] and the two almost planar side-chain fragments [maximum deviations = 0.015 (1) and 0.019 (1) Å], that include the aromatic ring and bridging atoms, are 18.1 (1) and 18.0 (1)°. In the crystal, pairs of weak intermolecular C—H⋯O hydrogen bonds link molecules into inversion dimers that form stacks along the a axis. The structure is further stabilized by weak intermolecular C—H⋯π interactions involving the benzene rings
Study of the nuclear component of primary cosmic rays aboard AES ''Proton-2''
Nuclear component of primary cosmic rays aboard Proton II satellite studied with aid of Cherenkov spectromete
1-Benzyl-3,5-bis(4-chlorobenzylidene)piperidin-4-one
The title compound, C26H21Cl2NO, crystallizes with two symmetry-independent molecules (A and B) in the asymmetric unit. In both molecules, the central heterocyclic ring adopts a sofa conformation. The dihedral angles between the planar part of this central heterocyclic ring [maximum deviations of 0.011 (1) and 0.036 (1) Å in molecules A and B, respectively] and the two almost planar [maximum deviations of 0.020 (1) and 0.008 (1) Å in A and 0.007 (1) and 0.011 (1) in B] side-chain fragments that include the aromatic ring and bridging atoms are 20.1 (1) and 31.2 (1)° in molecule A, and 26.4 (1) and 19.6 (1)° in molecule B. The dihedral angles between the planar part of the heterocyclic ring and the benzyl substituent are 79.7 (1) and 53.2 (1)° in molecules A and B, respectively. In the crystal, weak intermolecular C—H⋯O hydrogen bonds link the two independent molecules into dimers
Применение принципа двухканальности в измерительных устройствах для компенсации возмущающих воздействий неизвестной физической природы
The article notes the advantages of the method of constructing absolutely invariant measuring transducers for working in conditions with disturbing influences. However, this method is not universal. Its limitations are due to the impossibility of "symmetric" transmission of all disturbing influences into parallel measuring channels. A broader interpretation of the two-channel principle is proposed to overcome these limitations. The aim of the study was to substantiate and implement a method for constructing quasi-invariant measuring transducers and systems that retain their metrological characteristics under external disturbances of unknown physical nature. The theory that develops the two-channel principle to a full-fledged technological method is presented in the article. The theory includes the necessary and sufficient conditions for physical feasibility this method. Two fundamental tasks have been solved in the work. The first task is to identify signs that reflect the essence of the technological method in to specific cases and the second is to implement a methodology that allows these signs to be effectively applied in practice. In the examples, a complex of technologies is defined for groups of elements of quasi-invariant transducers that provide compensation of the influencing factors acting on them with acceptable accuracy. There are significant advantages in discussed method. It gives hope for acceptable measurement results under conditions when character and even physical principle of influencing a priori are unknown
Концепция векторных многокомпонентных физических величин, модели и метод измерения
The paper presents a new view of vector physical quantities as multicomponent quantities. Each of the components of the mentioned multicomponent quantities can carry important and even unique information about the sources and causes of their occurrence. Looking at the vector quantity as the multicomponent quantity led to the need to form the corresponding conception. There are three positions of this conception in this paper, which are formulated as follows: vector multicomponent physical quantities are considered as functions of the set of their constituent information components; the communication functions of the specified information components in the models of multicomponent physical quantities are determined by the laws of vector algebra; information models of vector multicomponent physical quantities allow an alternative representation of information components depending on the selected coordinate system.The mathematical model of the vector multicomponent physical quantity is presented. This model is fundamental and directly follows from the positions of the conception formulated above. This model can be applied to describe multicomponent displacements and deformations that both simple and complex objects undergo. An example of the complex object can be the manipulator of the universal industrial robot. The space for modeling multicomponent displacements of simple objects was shown in the paper. Information models of vector multicomponent physical quantities allow one to alternatively represent informative components. And the task of constructing such models is complex and ambiguous. Therefore, the formal apparatus for the synthesis of such models, which is based on certain rules and conventions, was proposed in the paper. The theoretical foundations of the method of optical measurements of informative components of multicomponent displacements and deformations of simple objects, which involves the use of multidimensional test objects, are presented.Представлен новый взгляд на векторную физическую величину как на величину многокомпонентную. Каждая из компонентов упомянутых многокомпонентных величин может нести важную и даже уникальную информацию об источниках и причинах их возникновения. Рассмотрение векторной величины как величины многокомпонентной привело к необходимости формирования соответствующей концепции. Представлены три положения концепции, которые заключаются в следующем: векторные многокомпонентные физические величины рассматриваются как функции множества составляющих их информативных компонентов; функции связи названных информативных компонентов в моделях многокомпонентных физических величин определяются законами векторной алгебры; информационные модели векторных многокомпонентных физических величин допускают альтернативное представление информативных составляющих в зависимости от выбранной системы координат.Представлена математическая модель векторной многокомпонентной физической величины. Данная модель является основополагающей и непосредственно вытекает из сформулированных выше положений концепции. Модель может быть применена при описании многокомпонентных перемещений и деформаций, которые претерпевают и простые, и сложные объекты. Примером сложного объекта может быть модель манипулятора универсального промышленного робота. Показано пространство моделирования многокомпонентных перемещений простых объектов. Информационные модели векторных многокомпонентных физических величин позволяют альтернативно представлять информативные составляющие, а задача построения таких моделей сложна и не однозначна. Поэтому в статье предложен формальный аппарат синтеза таких моделей, который основан на определённых правилах и соглашениях. Представлены теоретические основы метода оптических измерений информативных составляющих многокомпонентных перемещений и деформаций простых объектов, который предполагает использование многомерных тестовых объектов
Quasigroups, Asymptotic Symmetries and Conservation Laws in General Relativity
A new quasigroup approach to conservation laws in general relativity is
applied to study asymptotically flat at future null infinity spacetime. The
infinite-parametric Newman-Unti group of asymptotic symmetries is reduced to
the Poincar\'e quasigroup and the Noether charge associated with any element of
the Poincar\'e quasialgebra is defined. The integral conserved quantities of
energy-momentum and angular momentum are linear on generators of Poincar\'e
quasigroup, free of the supertranslation ambiguity, posess the flux and
identically equal to zero in Minkowski spacetime.Comment: RevTeX4, 5 page
Study of High Energy Gamma-Quanta Beyond the Atmosphere
Measurements of primary cosmic radiation gamma quanta from Proton I and II satellite
- …