43 research outputs found

    Identification of main contributions to conductivity of epitaxial InN

    Full text link
    Complex effect of different contributions (spontaneously formed In nanoparticles, near-interface, surface and bulk layers) on electrophysical properties of InN epitaxial films is studied. Transport parameters of the surface layer are determined from the Shubnikov-de Haas oscillations measured in undoped and Mg-doped InN films at magnetic fields up to 63 T. It is shown that the In nanoparticles, near-interface and bulk layers play the dominant role in the electrical conductivity of InN, while influence of the surface layer is pronounced only in the compensated low-mobility InN:Mg films

    Mie-resonances, infrared emission and band gap of InN

    Full text link
    Mie resonances due to scattering/absorption of light in InN containing clusters of metallic In may have been erroneously interpreted as the infrared band gap absorption in tens of papers. Here we show by direct thermally detected optical absorption measurements that the true band gap of InN is markedly wider than currently accepted 0.7 eV. Micro-cathodoluminescence studies complemented by imaging of metallic In have shown that bright infrared emission at 0.7-0.8 eV arises from In aggregates, and is likely associated with surface states at the metal/InN interfaces.Comment: 4 pages, 5 figures, submitted to PR

    Ultraviolet stimulated emission in AlGaN layers grown on sapphire substrates using ammonia and plasma-assisted molecular beam epitaxy

    Get PDF
    Ammonia and plasma‐assisted (PA) molecular beam epitaxy modes are used to grow AlN and AlGaN epitaxial layers on sapphire substrates. It is determined that the increase of thickness of AlN buffer layer grown by ammonia‐MBE from 0.32 μm to 1.25 μm results in the narrowing of 101 X‐Ray rocking curves whereas no clear effect on 002 X‐Ray rocking curve width is observed. It is shown that strong GaN decomposition during growth by ammonia‐MBE causes AlGaN surface roughening and compositional inhomogeneity, which leads to deterioration of its lasing properties. AlGaN layers grown by ammonia‐MBE at optimized temperature demonstrate stimulated emission (SE) peaked at λ = 330 nm, 323 nm, 303 nm and 297 nm with the SE threshold values of 0.7 MW cm−2, 1.1 MW cm−2, 1.4 MW cm−2 and 1.4 MW cm−2, respectively. In comparison to these, AlGaN layer grown using PA‐MBE pulsed modes (migration‐enhanced epitaxy, metal‐modulated epitaxy, and droplet elimination by thermal annealing) shows a SE with a relatively low threshold (0.8 MW cm−2) at the considerably shorter wavelength of λ = 267 nm
    corecore