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Ammonia and plasma-assisted (PA) molecular beam epitaxy modes are used to grow AlN and 

AlGaN epitaxial layers on sapphire substrates. It is determined that the increase of thickness of AlN 

buffer layer grown by ammonia-MBE from 0.32 μm  to 1.25  μm results in the narrowing of 101 X-

Ray rocking curves whereas no clear effect on 002 X-Ray rocking curve width is observed. It is 

shown that strong GaN decomposition during growth by ammonia-MBE causes AlGaN surface 

roughening and compositional inhomogeneity, which leads to deterioration of its lasing properties. 

AlGaN layers grown by ammonia-MBE at optimized temperature demonstrate stimulated emission 

(SE) peaked at λ = 330 nm, 323 nm, 303 nm and 297 nm with the SE threshold values of 

0.7 MW cm-2, 1.1 MW cm-2, 1.4 MW cm-2 and 1.4 MW cm-2, respectively. In comparison to these, 

AlGaN layer grown using PA-MBE pulsed modes (migration-enhanced epitaxy, metal-modulated 
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epitaxy, and droplet elimination by thermal annealing) shows a SE with a relatively low threshold 

(0.8 MW cm-2) at the considerably shorter wavelength of λ = 267 nm. 

 

1. Introduction 

To date GaN, AlN, and their ternary alloys are considered the basic materials for optoelectronic 

semiconductor devices operating in the A-, B-, and C-ultraviolet (UV) spectral regions. The 

compact and efficient UV semiconductor devices are highly requested for a variety of important 

applications, including solar- and visible-blind photodetectors, air/water disinfection systems, 

spectral analysis, polymerization, secure communication, etc.[1] III-nitrides (III-N) have also 

attracted great attention as materials for high power and RF electronics, which is caused by 

numerous of their outstanding properties such as a wide bandgap, high electric breakdown field, 

and high electron saturation velocity.[2] However, wide implementation of III-N-based 

heterostructures, face some technical problems limiting their efficiency and commercial availability. 

The main difficulty is a high cost of bulk GaN or AlN crystals, resulting in usage of foreign 

substrates for heteroepitaxy (SiC, sapphire, Si) and leading to a high density of structural defects. 

Furthermore, expanding the spectral range of AlGaN-based optoelectronics to a deeper UV requires 

an increase in AlN fraction of AlGaN alloy which results in degradation of AlGaN structural 

quality because of the high Al–N bond strength and, therefore, lower Al adatom mobility.[3] Besides 

the known difficulty in p-doping of III-Ns, due to a significant increase of donor activation energy 

as the Al fraction increases, n-doping of high Al content AlGaN becomes challenging too.[4] Last 

but not least, much lower light extraction efficiencies from c-plane AlGaN-based emitters with high 

AlN mole fractions are expected. This is caused by the change of the order in the valence sub-bands 

between GaN and AlN in such a way that the probability of light emitted along the c-axis 

significantly reduces in AlGaN with high Al content.[5] 
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In most cases, the UV-optoelectronics devices were fabricated using metalorganic chemical 

vapor deposition (MOCVD). This technology in particular, demonstrated a significant progress 

from initial optically pumped UV lasers to recent implementation of the first sub-300 nm UV laser 

diode on the bulk AlN substrate.[6-10] Nevertheless, molecular beam epitaxy (MBE) also 

demonstrated optically pumped UV-lasing from AlGaN quantum well structures grown on c-

sapphire substrates, with a threshold power density comparable to that obtained using 

MOCVD.[11,12] MBE which is less suitable for mass production, has some potential advantages, 

such as lower incorporation levels of impurities and a wider range of in-situ monitoring tools. In 

addition, this technology allows for the formation of quantum-sized heterostructures with 

monolayer-range sharpness at the interfaces. Moreover, typically lower growth temperatures 

applied in MBE inhibit the undesired diffusion of dopant atoms from conductive layers to the active 

region of laser diode heterostructures.[13] 

In this work, we report on the optimization of MBE of AlN buffer layers and investigate the 

influence of MBE growth conditions on alloy homogeneity and optical properties of AlGaN layers. 

 

2. Experimental methods 

All the growth experiments were performed in an STE3N2 (SemiTEq) MBE reactor on 2-inch 

single side polished sapphire (0001) substrates with a surface misorientation of 0.2° by using both 

ammonia (NH3) and plasma-assisted (PA) modes. The pre-growth substrate preparation included 

annealing and nitridation steps as has been described in our earlier work. [14] The structures were 

studied by scanning electron microscope (SEM, Carl Zeiss Supra 40), atomic force microscope 

(AFM, Nanoflex Solar LS) and X-ray diffraction (PANalytical X’pert PRO) analysis. Room-

temperature (RT) photoluminescence (PL) and stimulated emission (SE) of AlGaN layers were 

excited with the 5th harmonic of emission of a Nd:YAG laser (λexc = 213 nm) and detected with a 

MayaPro spectrometer (Ocean Optics). As grown 2-inch wafers were cleaved into two halves with 
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single flat facets to provide a single-pass geometry for the SE measurements. The excitation 

emission was focused into a strip (~2 mm length), oriented normally to the cleaved edge, and the 

output emission was collected from the cleaved edge. The single-pass geometry minimized the 

influence of facet quality on the measured SE threshold value. The polarized SE was measured 

using a Rochon prism located between the sample edge and the light collecting lens. To determine 

an absorption edge, the RT transmittance spectra were measured using a deuterium lamp. 

 
3. Results and discussion 

3.1. NH3-MBE grown AlN buffers and AlGaN layers 

3.1.1. AlN buffer layer 

In our recent work we considered the effect of growth temperature and ammonia flow on surface 

morphology and structural properties of 0.32-μm -thick AlN epilayers.[14]  Here we extend our study 

on the effect of AlN thickness. The epitaxy for all the NH3-MBE grown AlN layers was initiated 

with a step of a relatively low growth rate of ~0.05 μm  h-1 (first 70 nm) followed by a  gradual 

increase to its normal rate of 0.2 μm  h-1. Two series of AlN buffer layers of different thickness 

(0.32 μm and 1.25  μm) were grown at varied growth temperature s Tg (from 800 °C to 1190 °C) and 

NH3 flow (from 30 sccm (standard cubic centimeters per minute) to 100 sccm). Other growth 

details can be found elsewhere. [14]  

In Figure 1, SEM images of the 1.25-μm -thick AlN layers grown at various conditions can be seen. 

As seen from the SEM images, a low growth temperature of 1010 °C leads to the formation of 

misoriented crystallites. Ammonia flow rate of 100 sccm and growth temperature of 1085 °C 

resulted in the formation of flat terraces having a width of up to ~1 μm  without hillocks, 

misoriented crystals and polycrystals observed in other layers. The same terrace-like morphology 

was also observed by AFM for the AlN layer grown at a higher ammonia flow rate of 200 sccm 

(not shown). The higher growth temperature leads to a formation of prismatic hills. A very similar 

behavior was observed for the series of thin AlN layers.[14]  
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The full widths at half maximum (FWHM) of X-ray rocking curves (XRC) for 101 and 002 XRD 

reflections are shown in Figures 2 as a function of temperature. Both the series of AlN layers 

demonstrate a tendency of XRC peaks narrowing with growth temperature increase (except for two 

0.32-μm -thick AlN layers grown at the highest studied temperature of 1190°C) which means the 

reduction of all threading dislocation density (TDD) with both screw and edge components.[15] This 

behavior can be explained by an enhanced mobility of Al adatoms at elevated growth 

temperatures.[16, 17] The lowest TDD values of nedge ~ 5.9×109 cm−2 and nscrew ~ 2.2 × 107 cm−2 were 

estimated for the 1.25-μm -thick AlN layer deposited at the NH3 flow rate of 50 sccm and 

Tg=1190 °C.[15] . It should be noted that a reduction in the FWHM values with the buffer layer 

thickness was observed for the asymmetric XRC peak 101 (Figure 2, a) only, while the widths of 

the symmetric peak 002 did not reveal a significant difference for the series of layers with the 

different thickness (Figure 2, b). This contradicts results reported by other authors, who 

demonstrated a  reduction of both edge and screw TDD with an increase in AlN thickness.[18, 19]  

The root mean square (RMS) surface roughness values for the AlN layers measured at a scan area 

of 5  5 μm 2 are plotted in Figure 3 as a function of growth temperature. As seen from the figure, 

no clear dependence of RMS roughness on growth conditions can be observed. One can just notice 

a somewhat rougher surface for the thicker AlN layers. As expected from Figure 1, the lowest 

roughness (≈ 0.7 nm) was measured for the AlN layer grown at a temperature of 1085°C and NH3 

flow of 100 sccm, demonstrating a terrace-like surface morphology (the estimated TDD values for 

the layer were of nedge ~ 8.9 × 1010 cm−2 and nscrew ~ 3.5 × 108 cm-2). 

3.1.2. AlGaN layers 

For the growth of AlGaN layers, a temperature of 1085 °C and NH3 flow of 100 sccm were taken as 

optimal conditions providing a reasonable compromise between the surface roughness and the 

structural quality of AlN/sapphire templates. AlGaN layers were grown using buffer structures 

consisting of 0.32 μm  thick AlN followed by 0.14 μm  thick gradient-composition AlyGa1-yN. The 

A
cc

ep
te

d 
A

rti
cl

eall 

A
cc

ep
te

d 
A

rti
cl

eall threading dislocation density (TDD)

A
cc

ep
te

d 
A

rti
cl

ethreading dislocation density (TDD)

can be

A
cc

ep
te

d 
A

rti
cl

e
can be explained by 

A
cc

ep
te

d 
A

rti
cl

e
explained by 

.

A
cc

ep
te

d 
A

rti
cl

e
.[

A
cc

ep
te

d 
A

rti
cl

e
[1

A
cc

ep
te

d 
A

rti
cl

e
16

A
cc

ep
te

d 
A

rti
cl

e
6, 

A
cc

ep
te

d 
A

rti
cl

e
, 1

A
cc

ep
te

d 
A

rti
cl

e
17

A
cc

ep
te

d 
A

rti
cl

e
7]

A
cc

ep
te

d 
A

rti
cl

e
] The lowest TDD values of 

A
cc

ep
te

d 
A

rti
cl

e
The lowest TDD values of 

estimated for the 1.25

A
cc

ep
te

d 
A

rti
cl

e

estimated for the 1.25-

A
cc

ep
te

d 
A

rti
cl

e

-μm

A
cc

ep
te

d 
A

rti
cl

e

μm

[1

A
cc

ep
te

d 
A

rti
cl

e

[15

A
cc

ep
te

d 
A

rti
cl

e

5]

A
cc

ep
te

d 
A

rti
cl

e

] . It should be noted that a reduc

A
cc

ep
te

d 
A

rti
cl

e

. It should be noted that a reduc

thickness was observed for the asymmetric XRC peak 101 (

A
cc

ep
te

d 
A

rti
cl

e

thickness was observed for the asymmetric XRC peak 101 (

the symmetric peak 002 did not reveal a significant difference for the series of layers with the 

A
cc

ep
te

d 
A

rti
cl

e

the symmetric peak 002 did not reveal a significant difference for the series of layers with the 

different thickness (

A
cc

ep
te

d 
A

rti
cl

e

different thickness (Figure 2,

A
cc

ep
te

d 
A

rti
cl

e

Figure 2,

ated a 

A
cc

ep
te

d 
A

rti
cl

e

ated a reduction of bot

A
cc

ep
te

d 
A

rti
cl

e

reduction of bot

root mean square (RMS) surface roughness values for the AlN layers

A
cc

ep
te

d 
A

rti
cl

e

root mean square (RMS) surface roughness values for the AlN layers

are plotted 

A
cc

ep
te

d 
A

rti
cl

e

are plotted in 

A
cc

ep
te

d 
A

rti
cl

e

in 

o clear dependenc

A
cc

ep
te

d 
A

rti
cl

e

o clear dependence

A
cc

ep
te

d 
A

rti
cl

e

e of RMS roughness on growth conditions 

A
cc

ep
te

d 
A

rti
cl

e

of RMS roughness on growth conditions 

rougher surface for the thicker AlN layers. 

A
cc

ep
te

d 
A

rti
cl

e

rougher surface for the thicker AlN layers. 

(≈

A
cc

ep
te

d 
A

rti
cl

e

(≈ 0.7

A
cc

ep
te

d 
A

rti
cl

e

0.7 nm

A
cc

ep
te

d 
A

rti
cl

e

nm)

A
cc

ep
te

d 
A

rti
cl

e

) was measured for the AlN laye

A
cc

ep
te

d 
A

rti
cl

e

was measured for the AlN laye

sccm

A
cc

ep
te

d 
A

rti
cl

e

sccm, demonstrating 

A
cc

ep
te

d 
A

rti
cl

e

, demonstrating 

the layer were of A
cc

ep
te

d 
A

rti
cl

e

the layer were of n A
cc

ep
te

d 
A

rti
cl

e

nedge A
cc

ep
te

d 
A

rti
cl

e

edge ~A
cc

ep
te

d 
A

rti
cl

e

~ 8.9A
cc

ep
te

d 
A

rti
cl

e

8.9

3.1.2. AlGaN layers A
cc

ep
te

d 
A

rti
cl

e

3.1.2. AlGaN layers



  

 This article is protected by copyright. All rights reserved 

composition y in the layer was varied from 1 to x by a linear decrease of Al flow (Ga and NH3 

flows were kept constant), where x is the AlN mole fraction of the upper AlxGa1-xN layer, which 

had the fixed thickness of 0.15 μm  in all the experiments. The aluminum composition x in the upper 

layer was varied within the series, depending on growth conditions. The relatively small AlN buffer 

thickness of 0.32 μm was chosen to provide a smoother initial surface for AlGaN growth. In total, 

two series of AlGaN layers were grown by ammonia MBE. The first series was prepared to 

investigate the effect of growth temperature on AlGaN surface roughness and its optical properties, 

and the optimal temperature from this experiment was then used for the second series where the 

Ga/Al ratio was varied. 

All the AlGaN layers within the first series were grown at a nominally fixed Al/(Ga+Al) flux ratio 

of ≈ 0.3 and NH3 flow of 100 sccm. The growth temperature of the gradient-composition and final 

top AlGaN layers was varied from 860°C to 950°C. 

First, the AlGaN surface morphology was assessed by AFM. The corresponding AlGaN RMS 

surface roughness is plotted as a function of growth temperature in Figure 4 (circles), and can be 

seen to increases with temperature. An increased rate of GaN decomposition during the growth at 

elevated temperatures may be one of the possible explanations to this observation. It is known from 

the literature, that GaN surface morphology and growth rate are very sensitive to growth 

temperature due to the activation of GaN thermal decomposition. [20, 21] To provide further evidence, 

we carried out an additional experiment on GaN growth using exactly the same conditions as for 

our AlGaN. The GaN growth rate is also shown as a function of growth temperature in Figure 4 

(squares). Progressing thermal decomposition at temperatures above ≈ 870°C at the NH3 flow of 

100 sccm manifests itself through the noticeable decrease in the GaN growth rate. 

Smoother AlGaN surfaces were achieved at growth temperatures ranging from 870°C to 920°C, 

which correspond to only a moderate GaN thermal decomposition, i.e., resulting in growth rate 

reduction of lower than about 5-6%. Temperatures outside of the range result in somewhat rougher 
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AlGaN surface morphologies. While the effect of the elevated temperatures can be explained by 

severe thermal decomposition of GaN fraction, the lower than optimal temperatures are assumed to 

degrade the surface morphology due to progressively decreasing adatom mobility. 

The effect of the growth temperature on the localization degree of photogenerated carriers in 

AlGaN layers, was evaluated from measurements of the Stokes shift determined as energetic 

difference between PL band position and optical absorption edge.[22] As seen from Figure 5 

(circles), lower Stokes shifts are observed for the AlGaN layers grown at the temperatures again 

within the range of 870°C – 920°C, while a rise in the growth temperature above 940°C leads to a 

substantial rise of the Stokes shift. Generally, the similar temperature behaviors of the Stokes shift 

and RMS roughness are quite noticeable, which allows us to correlate the rougher surface 

morphology with the pronounced compositional inhomogeneity in our AlGaN, which was prepared 

outside the optimal range of growth temperatures.  

The AlGaN layers grown at 860°C, 875°C and 905°C demonstrated stimulated emission near 

λ = 300 nm, with threshold values of 2 MW cm-2, 1.4 MW cm-2 and 9 MW cm-2 respectively 

(Figure 5, squares). It should be noted that the lowest SE threshold corresponds to the sample with 

the lowest RMS roughness of ≈ 1.3 nm. An increase of AlGaN growth temperature above ~880°C 

leads to a drastic deterioration of lasing properties which is likely caused by the negative influence 

of both the surface roughening and the AlGaN alloy disordering. 

The second series of AlGaN layers was grown by NH3-MBE at the optimized temperature of 870°C 

with varied Al/(Ga+Al) ratios resulting in the following AlN mole fractions in AlGaN alloys: 0.24, 

0.31, 0.38 and 0.43, as estimated from the corresponding transmittance spectra measurements. The 

layers demonstrated SE at λ = 330 nm, 323 nm, 303 nm and 297 nm with the SE thresholds of 

0.7 MW cm-2, 1.1 MW cm-2, 1.4 MW cm-2 and 1.4 MW cm-2, respectively. The SE of all the layers 

was found to be transverse-electric (TE) polarized with spectral linewidths of 2.1-2.8 nm, whereas 

the corresponding spontaneous recombination PL spectra were 10-14 nm broad. An example of SE 
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spectra for the Al0.24Ga0.76N layer is shown in Figure 6. The Stokes shift values for the samples of 

the second series was found to be lower than 20 meV which indicates a good alloy homogeneity of 

AlGaN in these layers. 

 

3.2. PA-MBE grown AlGaN layer 

Recently, we have demonstrated a possibility of PA-MBE growth of an AlN buffer layer with a 

relatively small surface roughness of 0.9 nm by using an approach developed earlier.[14,23,24] In this 

work, we used the same approach to prepare the AlN buffer for subsequent AlGaN growth. The 

AlN buffer layer was grown at temperature of 805°C and consisted of 80 nm thick migration-

enhanced epitaxy (MEE) nucleation sublayer, 0.4 μm -thick metal-modulated epitaxy (MME) 

sublayer and 0.33 μm  thick sublayer grown at continuous PA-MBE metal-rich conditions. The 

nitrogen flow and plasma power were 3 sccm and 200 W, respectively. A 0.15 μm  thick Al0.7Ga0.3N 

layer was grown at the temperature of 740°C using the droplet elimination by thermal annealing 

(DETA) mode.[24] In this mode, AlGaN growth is performed by the cyclic switching between two 

stages: each 2 min long phase of continuous AlGaN growth in Ga-rich conditions was followed by 

a 0.5 min long annealing step with all the precursors (including nitrogen plasma) switched off. The 

annealing phase was introduced to evaporate the excess of Ga adatoms accumulated during the 

growth phase and prevent the undesirable formation of Ga droplets. The Ga and N* flows, and the 

phase durations were tuned accurately to provide a full suppression of Ga droplet formation. 

The surface of the PA-MBE-grown Al0.7Ga0.3N layer was found to be not particularly smooth; a 

corresponding RMS surface roughness of ~3 nm was estimated from the 5 × 5 μm 2 AFM map 

shown in Figure 7. Despite this, the layer demonstrated a TE-polarized SE peaked at λ = 267 nm 

with a relatively low threshold of 0.8 MW cm-2 (Figure 8). The spectral linewidth of the emission 

decreased from ~16 nm to ~6 nm as SE occurred. It is worth noting that the threshold value is even 

lower than that of the shortest wavelength AlGaN layer grown by ammonia-MBE. Such an 
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improvement is most likely caused by the thicker AlN buffer layer resulting in an improved 

structural quality (TDD values of nedge ~ 3.4 × 1010 cm−2 and nscrew ~ 3.3 × 109 cm-2 in a similar AlN 

buffer layer were estimated in our recent work).[14]  

Taking into account the relatively low threshold value (despite the relatively rough surface 

morphology), one could expect a substantial improvement of AlGaN lasing properties after a proper 

optimization of PA-MBE growth conditions. 

 

4. Conclusions 

In this work, we investigated different MBE approaches to grow AlN and AlGaN epitaxial layers 

on sapphire substrates. Ammonia MBE growth conditions of AlN buffer were optimized to achieve 

RMS roughness below 1 nm. It was shown that the increase of AlN layer thickness from 0.32 μm to 

1.25 μm results in the decrease of 101 X-Ray rocking curve FWHM whereas no effect was 

observed on 002 X-Ray rocking curve FWHM. The lowest estimated dislocation density values for 

the 1.25 μm -thick AlN layer were nedge ~ 5.9×109 cm−2 and nscrew ~ 2.2 × 107 cm−2. Upon 

optimization of AlGaN growth temperature, the series of 0.15-μm -thick layers with varied Ga/Al 

flux ratios was grown by ammonia MBE. All these AlGaN layers demonstrated SE peaked at 

λ = 330 nm, 323 nm, 303 nm and 297 nm with the SE threshold values of 0.7 MW cm-2, 

1.1 MW cm-2, 1.4 MW cm-2 and 1.4 MW cm-2, respectively. Pulsed PA-MBE modes (MEE, MME, 

DETA) were used to grow a 0.15-μm -thick Al0.7Ga0.3N layer. Despite the rather rough surface 

(RMS roughness of ≈ 3 nm), the layer exhibited SE at λ = 267 nm with a relatively low threshold 

value of 0.8 MW cm-2. The obtained results demonstrate the possibility of growth of laser quality 

AlGaN-based heterostructures for UV applications by both ammonia and PA-MBE. 
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Figure 1. SEM images (2 μm  × 2 μm) of the 1.25 -μm -thick AlN epilayers grown at different NH3-
MBE conditions. 
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Figure 2. 101 (a) and 002 (b) XRC FWHM values of AlN layers grown by NH3-MBE at different 
conditions. 

 

 
 

Figure 3. RMS surface roughness of AlN layers grown by NH3-MBE at different conditions 
(5 μm × 5 μm AFM scans). 
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Figure 4. RMS surface roughness of AlGaN layers (5 μm × 5 μm AFM scans) and GaN growth 
rate as a function of growth temperature. 
 

 
 

Figure 5. Stokes shift and SE threshold values of AlGaN layers as a function of growth 
temperature. 
 

 
 

Figure 6. SE spectra for the NH3-MBE grown Al0.24Ga0.76N layer measured at different excitation 
levels. Inset shows the dependence of integrated emission on excitation level. 
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Figure 7. AFM scan (5 μm × 5 μm) of PA-MBE-grown Al0.7Ga0.3N layer. 
 

 
 

Figure 8. SE spectra for the PA MBE grown Al0.7Ga0.3N layer measured at different excitation 
levels. Inset shows the dependence of integrated emission on excitation level. 
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Ammonia (NH3) and plasma-assisted (PA) molecular beam epitaxy is used to grow AlN and AlGaN 

epitaxial layers on sapphire substrates. The effect of the growth conditions on the structural 

properties of AlN buffer as well as photoluminescence and stimulated emission of AlGaN layers 

grown by NH3-MBE is shown. A stimulated emission in NH3- and PA-MBE grown AlGaN layers 

with a relatively low threshold is demonstrated. 
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Ultraviolet stimulated emission in AlGaN layers grown on sapphire substrates using ammonia 
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