22 research outputs found

    Limits on Dark Matter Effective Field Theory Parameters with CRESST-II

    Full text link
    CRESST is a direct dark matter search experiment, aiming for an observation of nuclear recoils induced by the interaction of dark matter particles with cryogenic scintillating calcium tungstate crystals. Instead of confining ourselves to standard spin-independent and spin-dependent searches, we re-analyze data from CRESST-II using a more general effective field theory (EFT) framework. On many of the EFT coupling constants, improved exclusion limits in the low-mass region (< 3-4 GeV) are presented.Comment: 7 pages, 9 figure

    On Geoneutrinos

    No full text
    Experimental data on geoneutrinos allow to admit that masses of U, Th and K in the Earth can be up to mU = 1.7 · 1017 kg, mTh = 6.7 · 1017 kg and mK/mEarth ~ 2%. These values correspond to intrinsic Earth heat flux in ~300 TW. The most part of this flux goes up in rift zones as a heated gases. Argo Project results and the measurements of the Moon intrinsic heat flux support the existence of such a big flux. So large of U, Th, K abundances were predicted by Adjusted Hydridic Earth model

    On Geoneutrinos

    No full text
    Experimental data on geoneutrinos allow to admit that masses of U, Th and K in the Earth can be up to mU = 1.7 · 1017 kg, mTh = 6.7 · 1017 kg and mK/mEarth ~ 2%. These values correspond to intrinsic Earth heat flux in ~300 TW. The most part of this flux goes up in rift zones as a heated gases. Argo Project results and the measurements of the Moon intrinsic heat flux support the existence of such a big flux. So large of U, Th, K abundances were predicted by Adjusted Hydridic Earth model

    On Geoneutrinos

    No full text
    Experimental data on geoneutrinos allow to admit that masses of U, Th and K in the Earth can be up to mU = 1.7 · 1017 kg, mTh = 6.7 · 1017 kg and mK/mEarth ~ 2%. These values correspond to intrinsic Earth heat flux in ~300 TW. The most part of this flux goes up in rift zones as a heated gases. Argo Project results and the measurements of the Moon intrinsic heat flux support the existence of such a big flux. So large of U, Th, K abundances were predicted by Adjusted Hydridic Earth model

    New synthesis of trimethylsilyldiphenylphosphinite

    No full text
    <p>A series of novel synthetically important reactions has been developed for the quick convenient and high-yield preparation of trimethylsilyl diphenylphosphinite, a valuable for the synthesis of functionalized alkyldiphenylphosphine oxide by Arbuzov reaction. Initial compounds are (1-hydroxy-1-methylethyl)diphenylphosphine oxide and hexamethyldisilazane, bis(trimethylsilyl)acetamide, diethyl(trimethylsilyl)amine, trimethylchlorosilane.</p

    On Geoneutrinos

    No full text
    Experimental data on geoneutrinos allow to admit that masses of U, Th and K in the Earth can be up to mU = 1.7 · 1017 kg, mTh = 6.7 · 1017 kg and mK/mEarth ~ 2%. These values correspond to intrinsic Earth heat flux in ~300 TW. The most part of this flux goes up in rift zones as a heated gases. Argo Project results and the measurements of the Moon intrinsic heat flux support the existence of such a big flux. So large of U, Th, K abundances were predicted by Adjusted Hydridic Earth model

    Towards 14C-free liquid scintillator

    No full text
    A series of measurements has been started where the 14C concentration is determined from several liquid scintillator samples. A dedicated setup has been designed and constructed with the aim of measuring concentrations smaller than 10−18. Measurements take place in two underground laboratories: in the Baksan Neutrino Observatory, Russia, and in the new Callio Lab in the PyhĂ€salmi mine, Finland. Low-energy neutrino detection with a liquid scintillator requires that the intrinsic 14C concentration in the liquid is extremely low. In the Borexino CTF detector the concentration of 2 × 10−18 has been achieved being the lowest value ever measured. In principle, the older the oil or gas source that the liquid scintillator is derived from and the deeper it situates, the smaller the 14C concentration is supposed to be. This, however, is not generally the case and the concentration is probably due to the U and Th content of the local environment.peerReviewe
    corecore